Với giải Bài 3 trang 115 Toán lớp 7 Cánh diều chi tiết trong Bài 12: Tính chất ba đường trung trực của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 12: Tính chất ba đường trung trực của tam giác
Bài 3 trang 115 Toán 7 Tập 2: Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.
Lời giải:
GT |
ABC, ba đường trung tuyến cắt nhau tại G, ba đường trung trực cắt nhau tại G |
KL |
Tam giác ABC đều. |
Chứng minh (Hình vẽ dưới đây):
Vì G là giao điểm của ba đường trung trực và ba đường trung tuyến (giả thiết)
Nên ba đường trung tuyến cũng đồng thời là đường trung trực của tam giác.
Gọi AM, BN, CP lần lượt là ba đường trung trực của tam giác ABC.
Do đó AM BC tại trung điểm M của BC;
BN AC tại trung điểm N của AC;
CP AB tại trung điểm P của AB;
+) Xét tam giác ABM (vuông tại M) và tam giác ACM (vuông tại M) có:
MB = MC (M là trung điểm của BC),
AM là cạnh chung
Do đó ABM = ACM (hai cạnh góc vuông)
Suy ra AB = AC (hai cạnh tương ứng) (1)
+) Xét tam giác BAN (vuông tại N) và tam giác BCN (vuông tại N) có:
NA = NC (N là trung điểm của AC),
BN là cạnh chung
Do đó BAN = BCN (hai cạnh góc vuông)
Suy ra BA = BC (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra AB = AC = BC
Do đó tam giác ABC là tam giác đều.
Vậy tam giác ABC là tam giác đều.
Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:
Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
Giải SGK Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác
Giải SGK Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác