Với Giải Toán lớp 10 trang 92 Tập 1 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải Toán 10 trang 92 Tập 1 Cánh diều
Bài 1 trang 92 Toán lớp 10: Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào sau đây là đúng?
A. ;
B. ;
C. ;
D. .
Lời giải:
Đáp án đúng là: C.
MNPQ là hình thang với MN // PQ nên hai vectơ và ngược hướng.
Mà MN = 2 PQ nên .
Bài 2 trang 92 Toán lớp 10: Cho đoạn thẳng AB = 6 cm.
a) Xác định điểm C thỏa mãn .
b) Xác định điểm D thỏa mãn .
Lời giải:
a) Ta có , do đó và cùng hướng và AC = .
Suy ra A, B, C thẳng hàng, hơn nữa C là trung điểm của AB và AC = 3 cm.
b) Ta có , do đó và ngược hướng và AD = AB = 3 cm.
Suy ra A, B, D thẳng hàng; D và B nằm khác phía nhau so với A.
Bài 3 trang 92 Toán lớp 10: Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:
a) ;
b) .
Lời giải:
a) Vì P và N lần lượt là trung điểm của AB và AC nên PN là đường trung bình của tam giác ABC.
Do đó: PN // = BC.
Khi đó hai vectơ và cùng hướng và PN = BC.
Suy ra: .
Do đó: .
Vậy .
b) M và P lần lượt là trung điểm của BC và AB nên MP là đường trung bình của tam giác ABC.
Do đó: MP // AC VÀ MP = AC.
Lại có hai vectơ và cùng hướng và MP = CA nên hay .
Khi đó ta có: .
Vậy .
Bài 4 trang 92 Toán lớp 10: Cho tam giác ABC. Các điểm D, E thuộc cạnh BC thỏa mãn BD = DE = EC (Hình 62). Giả sử , . Biểu diễn các vectơ theo .
Lời giải:
+ Ta có:
+ BD = DE = EC và D, E thuộc cạnh BC nên BD = BC.
Mà và cùng hướng nên .
Suy ra: .
Vậy .
+ Hai vectơ cùng hướng và BE = BC nên .
Suy ra: .
Vậy .
+ Ta có:
Vậy .
+ Ta có:
Vậy .
Bài 5 trang 92 Toán lớp 10: Cho tứ giác ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD. Gọi G là trung điểm của đoạn thẳng MN, E là trọng tâm của tam giác BCD. Chứng minh:
a) ;
b) ;
c) Điểm G thuộc đoạn thẳng AE và .
Lời giải:
a) Ta có M là trung điểm của AB nên .
Tương tự N là trung điểm CD nên .
Lại có G là trung điểm của MN nên .
Khi đó:
Ta có:
=
.
Vậy .
b) Do E là trọng tâm của tam giác BCD nên .
Thay vào câu a) ta có:
Vậy .
c) Theo câu b ta có: nên hai vectơ cùng hướng và EA = 4EG hay EG < EA.
Do đó 3 điểm E, A, G thẳng hàng và G nằm giữa E và A.
Suy ra điểm G thuộc đoạn thẳng AE.
Vì EA = 4 EG nên AG = AE.
Hai vectơ và cùng hướng.
Do đó: .
Bài 6 trang 92 Toán lớp 10: Cho hình bình hành ABCD. Đặt . Gọi G là trọng tâm của tam giác ABC. Biểu thị các vectơ theo hai vectơ .
Lời giải:
Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD.
Khi đó O là trung điểm của AC và BD.
Do đó BO là đường trung tuyến của tam giác ABC.
Vì G là trọng tâm của tam giác ABC nên G thuộc trung tuyến BO của tam giác ABC.
Theo tính chất trọng tâm ta có: .
Mà BO = BD nên .
Hai vectơ cùng hướng và BG = BD.
Nên .
Ta có:
Do đó: .
Do ABCD là hình bình hành nên .
Ta có:
.
Vậy .
Bài 7 trang 92 Toán lớp 10: Cho tam giác ABC. Các điểm D, E, H thỏa mãn
.
a) Biểu thị mỗi vectơ theo hai vectơ .
b) Chứng minh D, E, H thẳng hàng.
Lời giải:
Vì nên và cùng hướng và .
nên cùng hướng và AE = .
nên cùng hướng và .
a) + Ta có
Mà .
Do đó:
.
Suy ra: .
+ Ta có:
Mà , .
Do đó:
Vậy .
+ Ta có:
Mà , .
Do đó:
Vậy .
b) Theo câu a, ta có: và .
Do đó: .
Suy ra D, H, E thẳng hàng, hơn nữa H là trung điểm của DE.
Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác: