Với giải Câu 4 trang 108 Vở bài tập Toán lớp 7 Cánh diều chi tiết trong Bài 10: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong Vở bài tập Toán 7. Mời các bạn đón xem:
Giải VBT Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
Câu 4 trang 108 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Gọi H là hình chiếu của A trên đường thẳng BC. Giả sử H là trung điểm của đoạn thẳng BM. Chứng minh:
a) ∆AHB = ∆AHM;
b) AG = AB.
Lời giải:
a) Xét hai tam giác vuông AHB và AHM, ta có:
AH là cạnh chung;
HB = HM (giả thiết);
Suy ra ∆AHB = ∆AHM (hai cạnh góc vuông).
b) Vì ∆AHB = ∆AHM nên AB = AM (1)
Vì hai đường trung tuyến AM và BN cắt nhau tại G nên G là trọng tâm tam giác ABC, suy ra AG = AM (2)
Từ (1) và (2) suy ra AG = AB.
Xem thêm lời giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Câu 1 trang 105 vở bài tập Toán lớp 7 Tập 2: