Với Giải toán lớp 7 trang 81 Tập 2 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 81 Tập 2 Kết nối tri thức
Luyện tập 2 trang 81 Toán lớp 7: a) Chứng minh trong tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.
b) Chứng minh rằng trong tam giác đều, điểm cách đều ba đỉnh cũng cách đều ba cạnh của tam giác.
Phương pháp giải:
a) Chứng minh A thuộc đường trung trực BC nên AD là đường cao.
Chứng minh: từ đó suy ra AD là phân giác góc A
b) Điểm cách đều ba đỉnh là giao của ba đường trung trực trong tam giác GA = GB = GC
Sử dụng kết quả ý a, chứng minh G là giao điểm ba đường phân giác trong tam giác ABC
Lời giải:
a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D
Ta có: Tam giác ABC cân nên AB = AC
thuộc đường trung trực của cạnh BC (t/c)
là đường trung trực của BC.
Xét và có:
AB = AC (gt)
BD = CD (gt)
AD: cạnh chung
AD là tia phân giác góc BAC.
Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.
b)
Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.
Tam giác ABC đều nên AB = BC = CA
Tam giác ABC cân tại A có AN là đường trung tuyến
AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)
Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC
Mà AN cắt BP tại G
là giao điểm ba đường phân giác của tam giác ABC
cách đều ba cạnh của tam giác ABC (Tính chất)
Bài tập
Bài 9.26 trang 81 Toán lớp 7: Gọi H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HBC, HCA, HAB.
Phương pháp giải:
-Trực tâm của tam giác là giao điểm của ba đường cao
-Xác định các đường cao của mỗi tam giác.
Lời giải:
a)
Trong ΔABC ta có H là trực tâm nên:
AH ⊥ BC tại N, BH ⊥ AC tại P, CH ⊥ AB tại M
Trong ΔAHB, ta có:
HM ⊥ AB
BN ⊥ AH
Mà MH cắt BN tại C
=> C là trực tâm của tam giác AHB.
Trong ΔHAC, ta có:
HP ⊥ AC
CN ⊥ AH
Mà HP cắt CN tại B
=> B là trực tâm của ΔHAC.
Trong ΔHBC, ta có:
HN ⊥ BC
BM ⊥ HC
Mà HN cắt BM tại A
=> A là trực tâm của tam giác HBC
Bài 9.27 trang 81 Toán lớp 7: Cho tam giác ABC có và trực tâm H. Tìm góc BHC.
Phương pháp giải:
- Tính (Kề bù )
- Tính (Tam giác ABD vuông tại D)
- Tính (Tam giác BHE vuông tại E)
Lời giải:
Gọi E là chân đường cao từ C xuống AB, D là chân đường cao từ B xuống AC
=> HC ⊥ BE, HB ⊥ CD
Ta có:
∆ ADB là tam giác vuông tại D:
∆ BEH là tam giác vuông tại E
Hay
Bài 9.28 trang 81 Toán lớp 7: Xét điểm O cách đều 3 đỉnh của tam giác ABC. Chứng minh rằng nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
Phương pháp giải:
Chứng minh tam giác ABC có một góc bằng 90 độ
Lời giải:
O cách đều 3 đỉnh của tam giác ABC
cân tại O.
Giả sử O là trung điểm BC
cân tại O
Xét tam giác ABC có
Vậy nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
Bài 9.29 trang 81 Toán lớp 7: a) Có một chi tiết máy ( đường viền ngoài là đường tròn) bị gãy. (H.9.46). Làm thế nào để xác định được bán kính của đường viền này ?
b) Trên bản đồ, ba khu dân cư được quy hoạch tại điểm A, B, C không thẳng hàng. Hãy tìm trên bản đồ một điểm M cách đều A, B, C để quy hoạch một trường học
Phương pháp giải:
a) Lấy ba điểm phân biệt A, B, C trên đường viền ngoài chi tiết máy sau đó xác định giao điểm 3 đường trung trực của đoạn AB, BC, CA.
b) Vẽ đường trung trực của các đoạn AB, AC, BC.
Lời giải:
a)
- Lấy ba điểm phân biệt A, B, C trên đường viền ngoài chi tiết máy.
- Vẽ đường trung trực cạnh AB và cạnh BC. Hai đường trung trực này cắt nhau tại O. Khi đó O là tâm cần xác định.
- Bán kính đường tròn cần tìm là độ dài đoạn OB (hoặc OA hoặc OC).
b)
- Bước 1: Vẽ đường trung trực của các đoạn AB, AC, BC
- Bước 2: 3 đường trung trực này cắt nhau tại M. Khi đó MA= MB=MC.
- Bước 3: M là điểm cần xác định.
Bài 9.30 trang 81 Toán lớp 7: Cho hai đường thẳng không vuông góc b,c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). Hãy tìm điểm B thuộc b, điểm C thuộc c sao cho tam giác ABC nhận H làm trực tâm.
Phương pháp giải:
Để vẽ trực tâm ta xác định 2 đường cao của tam giác trên. Giao điểm của 2 đường cao chính là trực tâm của tam giác.
Lời giải:
- Kẻ HD đường thẳng c tại điểm D, HE đường thẳng b tại điểm E
- Nối A với H. Kéo dài DH cắt đường thẳng b tại B.
Từ B kẻ đường vuông góc với AH, đường thẳng đó cắt đường thẳng c tại 1 điểm. Điểm đó chính là điểm C.
=> H là trực tâm của tam giác ABC.
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác: