Cho tam giác ABC vuông tại C có góc CAB= 90 độ , AE là tia phân giác của góc CAB

1.1 K

Với giải Bài 82 trang 92 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 11: Tính chất ba đường phân giác của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 11: Tính chất ba đường phân giác của tam giác

Bài 82 trang 92 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại C có CAB^=60° , AE là tia phân giác của góc CAB (E ∈ BC). Gọi D là hình chiếu của B trên tia AE, K là hình chiếu của E trên AB. Chứng minh:

a) EB là tia phân giác của góc DEK, EK là tia phân giác của góc BEA;

b) EC = ED = EK.

Lời giải:

Cho tam giác ABC vuông tại C có góc CAB = 60 độ, AE là tia phân giác của góc CAB (E thuộc BC)

a) Tam giác ABC vuông tại C có CAB^+CBA^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra CBA^=90°CAB^=90°60°=30° .

Tam giác EBK vuông tại K có (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra KEB^=90°KBE^=90°30°=60° .

•Vì AE là tia phân giác của góc CAB nên CAE^=BAE^=12CAB^=12.60°=30° .

Tam giác ACE vuông tại C có CEA^+CAE^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra CEA^=90°CAE^=90°30°=60°

Do đó DEB^=CEA^=60° (hai góc đối đỉnh).

Ta có KEB^=DEB^ (cùng bằng 60°) nên EB là tia phân giác của góc DEK.

•Ta có KEA^+KED^=180° (hai góc kề bù)

Hay KEA^+KEB^+BED^=180°

Suy ra KEA^=180°KEB^BED^=180°60°60°=60° .

Do đó KEA^=KEB^ (cùng bằng 60°).

Nên EK là tia phân giác của góc BEA.

Vậy EB là tia phân giác của góc DEK, EK là tia phân giác của góc BEA.

b) Xét ∆ACE và ∆AKE có:

ACE^=AKE^=90°,

AE là cạnh chung,

CAE^=KAE^ (chứng minh câu a).

Do đó ∆ACE = ∆AKE (cạnh huyền – góc nhọn).

Suy ra CE = KE (hai cạnh tương ứng) (1)

Xét ∆EKB và ∆EDB có:

EKB^=EDB^=90°,

BE là cạnh chung,

KEB^=DEB^ (chứng minh câu a)

Do đó ∆EKB = ∆EDB (cạnh huyền – góc nhọn).

Suy ra KE = DE (hai cạnh tương ứng) (2)

Từ (1) và (2) ta có EC = EK = ED.

Vậy EC = ED = EK.

Đánh giá

0

0 đánh giá