Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm

2.3 K

Với giải Bài 68 trang 88 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 9: Đường trung trực của một đoạn thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 9: Đường trung trực của một đoạn thẳng

Bài 68 trang 88 sách bài tập Toán lớp 7 Tập 2: Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:

a) OM là đường trung trực của đoạn thẳng AB;

b) Tam giác DMC là tam giác cân.

Lời giải:

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz

a) Vì Oz là tia phân giác của góc xOy nên xOz^=zOy^.

Xét ∆OAM và ∆OBM có

OAM^=OBM^=90°,

OM là cạnh chung,

AOM^=BOM^ (do xOz^=zOy^)

Do đó ∆OAM = ∆OBM (cạnh huyền – góc nhọn).

Suy ra OA = OB và MA = MB (các cặp cạnh tương ứng).

Nên O và M cùng nằm trên đường trung trực của AB.

Vậy OM là đường trung trực của AB.

b) Xét ∆ADM và ∆BCM có

DAM^=CBM^=90°,

AM = BM (chứng minh câu a),

AMD^=BMC^ (hai góc đối đỉnh)

Do đó ∆ADM = ∆BCM (cạnh huyền – góc nhọn).

Suy ra MD = MC (hai cạnh tương ứng).

Do đó tam giác CDM cân tại M.

Vậy tam giác DMC cân tại M.

Đánh giá

0

0 đánh giá