Với Giải toán lớp 7 trang 42 Tập 2 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 42 Tập 2 Kết nối tri thức
HĐ 3 trang 42 Toán lớp 7: Hãy mô tả lại các bước đã thực hiện trong phép chia đa thức D cho đa thức E
Phương pháp giải:
Mô tả lại các bước tương tự như chia đa thức cho đa thức trường hợp chia hết.
Lời giải:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của D chia cho hạng tử bậc cao nhất của E.
Bước 2: Lấy D trừ đi tích của E với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của E
Bước 4: Lấy dư thứ nhất trừ đi tích E với thương vừa thu được ở bước 3. Ta được dư thứ hai có bậc nhỏ hơn bậc của E thì quá trình chia kết thúc.
HĐ 4 trang 42 Toán lớp 7: Kí hiệu dư thứ hai là G = - 6x + 10 . Đa thức này có bậc bằng 1. Lúc này phép chia có thể tiếp tục được không? Vì sao?
Phương pháp giải:
Đa thức bậc n không chia được cho đa thức bậc m (n < m)
Lời giải:
Lúc này phép chia không thực hiện được nữa vì bậc của đa thức -6x + 10 (là 1) nhỏ hơn bậc của đa thức chia x2 + 1 (là 2)
HĐ 5 trang 42 Toán lớp 7: Hãy kiểm tra lại đẳng thức D = E . (5x – 3) + G
Phương pháp giải:
Bước 1: Thực hiện phép nhân đa thức E .(5x – 3)
Bước 2: Thực hiện phép cộng đa thức tìm được ở bước 1 với đa thức G
Nếu kết quả = đa thức D thì đúng
Lời giải:
Ta có: E . (5x – 3) + G
= (x2 + 1) . (5x – 3) + (-6x + 10)
= x2 .(5x – 3) + 1. (5x – 3) + (-6x) + 10
= x2 . 5x + x2 . (-3) + 5x – 3 – 6x + 10
= 5x3 – 3x2 + (5x – 6x) + (-3 + 10)
= 5x3 – 3x2 – x + 7
= D
Vậy đẳng thức đúng.
Luyện tập 3 trang 42 Toán lớp 7: Tìm dư R và thương Q trong phép chia đa thức A= 3x4 – 6x – 5 cho đa thức B = x2 + 3x – 1 rồi viết A dưới dạng A = B . Q + R
Phương pháp giải:
+) Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Viết A = B. Q + R
Lời giải:
Vậy A = (x2 + 3x – 1) . (3x2 – 9x + 30) -105x + 25
Thử thách nhỏ trang 42 Toán lớp 7: Em có biết tại sao Vuông làm nhanh thế không?
Phương pháp giải:
Xét phép chia (A + B) : C với bậc của B nhỏ hơn bậc của C
Nếu A chia C không dư thì số dư của (A + B) : C là B
Lời giải:
Ta có: x3 – 3x2 + x – 1 = (x3 – 3x2) + (x -1).
Vì x3 – 3x2 chia cho x2 – 3x không dư ; bậc của x – 1 nhỏ hơn bậc của x2 – 3x nên số dư của phép chia (x3 – 3x2) + (x -1) cho x2 – 3x là x – 1
Vậy Vuông làm nhanh và đúng.
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác: