Với Giải toán lớp 7 trang 41 Tập 2 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 41 Tập 2 Kết nối tri thức
Câu hỏi trang 41 Toán lớp 7: Kiểm tra lại rằng ta có phép chia hết A : B = 2x2 – 5x + 1, nghĩa là xảy ra A = B . (2x2 – 5x + 1)
Phương pháp giải:
Nhân đa thức B với đa thức 2x2 – 5x + 1. Nếu kết quả bằng đa thức A thì đúng
Lời giải:
Ta có: B . (2x2 – 5x + 1)
= (x2 – 4x – 3) . (2x2 – 5x + 1)
= x2 .(2x2 – 5x + 1) – 4x . (2x2 – 5x + 1) – 3.(2x2 – 5x + 1)
= x2 . 2x2 + x2 . (-5x) + x2 . 1 – [4x . 2x2 + 4x . (-5x) + 4x . 1] – [3.2x2 + 3.(-5x) + 3.1]
= 2x4 – 5x3 + x2 – ( 8x3 – 20x2 + 4x) – (6x2 – 15x + 3)
= 2x4 – 5x3 + x2 – 8x3 + 20x2 - 4x – 6x2 + 15x - 3
= 2x4 + (-5x3 – 8x3) + (x2 + 20x2 – 6x2 ) + (-4x + 15x) – 3
= 2x4 - 13x3 + 15x2 + 11x - 3
=A
Vậy ta có phép chia hết A : B = 2x2 – 5x + 1
Luyện tập 2 trang 41 Toán lớp 7: Thực hiện phép chia
a) (-x6 + 5x4 – 2x3) : (0,5x2)
b) (9x2 – 4) : (3x + 2)
Phương pháp giải:
Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
Lời giải:
a) (-x6 + 5x4 – 2x3) : (0,5x2)
= (-x6 : 0,5x2) + (5x4 : 0,5x2) + (-2x3 : 0,5x2)
= -2x4 + 10x2 – 4x
b)
Vân dụng trang 41 Toán lớp 7: Vận dụng giải bài toán tròn tính huống mở đầu
Tìm đa thức P sao cho A = B. P, trong đó A = 2x4 – 3x3 – 3x2 + 6x – 2 và B = x2 – 2
Phương pháp giải:
+) P = A : B
+) Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
Lời giải:
Ta có: A = B . P nên P = A : B
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác: