Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC

6.5 K

Với giải Bài 53 trang 85 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 8: Đường vuông góc và đường xiên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 8: Đường vuông góc và đường xiên

Bài 53 trang 85 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC, lấy điểm M nằm giữa A và H. Chứng minh:

a) BH = CH;

b) MB = MC;

c) MA < AC.

Lời giải:

Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC

a) Vì tam giác ABC cân tại A nên AB = AC.

Xét ∆AHB và ∆AHC có:

AHB^=AHC^=90°,

BA = AC (chứng minh trên),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BH = CH (hai cạnh tương ứng).

Vậy BH = CH.

b) Vì ∆ABH = ∆ACH (chứng minh câu a)

Suy ra HAB^=HAC^ (hai góc tương ứng).

Xét ∆AMB và ∆AMC có:

BA = AC (chứng minh câu a),

MAB^=MAC^ (do HAB^=HAC^),

AM là cạnh chung

Do đó ∆ABM = ∆ACM (c.g.c).

Suy ra BM = CM (hai cạnh tương ứng).

Vậy BM = CM.

c) Vì AMC^ là góc ngoài của tam giác CMH tại đỉnh M

Nên AMC^=MHC^+MCH^

 MHC^=90° nên AMC^ là góc tù

Xét tam giác AMC có AMC^ là góc tù

Nên MC < AC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất).

Vậy MC < AC.

Đánh giá

0

0 đánh giá