Cho đa thức P(x) = 4x^4 + 2x^3 – x^4 – x^2

762

Với giải Bài 20 trang 43 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 2: Đa thức một biến. Nghiệm của đa thức một biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 2: Đa thức một biến. Nghiệm của đa thức một biến

Bài 20 trang 43 sách bài tập Toán lớp 7 Tập 2: Cho đa thức P(x) = 4x4 + 2x3 – x4 – x2.

a) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức P(x).

b) Mỗi phần tử của tập hợp 1;12 có là nghiệm của đa thức P(x) không? Vì sao?

Lời giải:

a) Ta có:

P(x) = 4x4 + 2x3 – x4 – x2

= (4x4 – x4) + 2x3 – x2

= 3x4 + 2x3 – x2

Đa thức P(x) có bậc là 4, hệ số cao nhất là 3 và hệ số tự do là 0.

b)

• Thay x = ‒1 vào P(x) = 3x4 + 2x3 – x2 ta được:

P(‒1) = 3 . (‒1)4 + 2 . (‒1)3 – (‒1)2

= 3 . 1 + 2 . (‒1) – 1

= 0.

Do đó x = ‒1 là nghiệm của đa thức P(x).

• Thay x = 12 vào P(x) = 3x4 + 2x3 – x2 ta được:

P12=3.124+2.123122

=3.116+2.1814

=316.

 316 ≠ 0 nên x = 12 không là nghiệm của đa thức P(x).

Vậy phần tử ‒1 của 1;12 là nghiệm của đa thức P(x).

Đánh giá

0

0 đánh giá