Sách bài tập Toán 7 Bài 1 (Cánh diều): Biểu thức số. Biểu thức đại số

4.1 K

Với giải sách bài tập Toán 7 Bài 1: Biểu thức số. Biểu thức đại số sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 1: Biểu thức số. Biểu thức đại số

Giải SBT Toán 7 trang 37 Tập 2

Bài 1 trang 37 sách bài tập Toán lớp 7 Tập 2: Trống đồng Ngọc Lũ là một trong những chiếc trống đồng cổ hiện được lưu trữ ở Bảo tàng Lịch sử Quốc gia. Mặt chiếc trống đồng Ngọc Lũ đó có dạng hình tròn với đường kính 79,3 cm. Biểu thức số nào sau đây biểu thị diện tích của mặt chiếc trống đồng Ngọc Lũ đó (lấy π = 3,14)?

a) (79,3 : 2)2 . 3,14 (cm2).

b) (79,3)2 . 3,14 (cm2).

Lời giải:

Mặt chiếc trống đồng Ngọc Lũ đó có dạng hình tròn với đường kính 79,3 cm nên có bán kính là 79, 3 : 2 (cm).

Khi đó diện tích của mặt chiếc trống đồng Ngọc Lũ đó là:

(79,3 : 2)2 . π = (79,3 : 2)2 . 3,14 (cm2).

Vậy biểu thức số biểu thị diện tích của mặt chiếc trống đồng Ngọc Lũ đó là:

(79,3 : 2)2 . 3,14 (cm2).

Ta chọn a).

Bài 2 trang 37 sách bài tập Toán lớp 7 Tập 2: Viết biểu thức số biểu thị diện tích phần bể được lát gạch (xung quanh bể và đáy bể) của một bể bơi có dạng hình hộp chữ nhật với chiều dài 15 m, chiều rộng 10 m và chiều cao 1,2 m (biết diện tích phần mạch vữa không đáng kể).

Lời giải:

Biểu thức số biểu thị diện tích đáy của bể là: 15 . 10 (m2).

Biểu thức số biểu thị diện tích xung quanh của bể là:

2 . (15 + 10) . 1,2 (m2).

Vậy biểu thức số biểu thị diện tích phần bể được lát gạch (xung quanh bể và đáy bể) của một bể bơi là: 2 . (15 + 10) . 1,2 + 15 . 10 (m2).

Bài 3 trang 37 sách bài tập Toán lớp 7 Tập 2: Mỗi ngày lượng nước một người cần uống (tính theo đơn vị lít) bằng khối lượng cơ thể (tính theo đơn vị ki-lô-gam) nhân với 0,03, sau đó cộng với lượng nước tăng cường cho thời gian vận động (cứ mỗi 30 phút vân động cộng thêm 0,335 l nước).

(Nguồn: https://24hthongtin.com/co-the-can-cung-cap-bao-nhieu-nuoc-moi-ngay.html)

a) Em Dung 7 tuổi nặng 23 kg, mỗi ngày em đạp xe 15 phút và tham gia các hoạt động vận động khác trong 105 phút. Viết biểu thức số biểu thị lượng nước em Dung cần uống mỗi ngày.

b) Áp dụng cách tính trên, hãy tính lượng nước mà mỗi thành viên trong gia đình em cần uống mỗi ngày.

Lời giải:

a) Thời gian vận động của em Dung là: 15 + 105 (phút).

Khi đó biểu thức số biểu thị lượng nước em Dung cần uống mỗi ngày là:

23 . 0,03 + 15+10530 . 0,335 (l).

b) Học sinh tự thực hiện tương tự như phần a).

Bài 4 trang 37 sách bài tập Toán lớp 7 Tập 2: Một ngày mùa hè người ta đo được nhiệt độ vào buổi sáng là t °C, buổi trưa nhiệt độ tăng thêm 3 °C so với buổi sáng và buổi đêm nhiệt độ giảm đi y °C so với buổi trưa.

a) Viết biểu thức đại số biểu thị nhiệt độ lúc buổi đêm của ngày mùa hè đó.

b) Tính nhiệt độ lúc buổi đêm của ngày mùa hè đó, biết t = 30 và y = 5.

Lời giải:

a) Nhiệt độ vào buổi sáng là t °C, buổi trưa nhiệt độ tăng thêm 3 °C so với buổi sáng nên nhiệt độ buổi trưa là: t + 3 (°C).

Buổi đêm nhiệt độ giảm đi y °C so với buổi trưa nên nhiệt độ buổi đêm là: t + 3 – y (°C).

Vậy biểu thức đại số biểu thị nhiệt độ lúc buổi đêm của ngày mùa hè đó là t + 3 – y (°C).

b) Thay t = 30 và y = 5 vào biểu thức t + 3 – y ta có nhiệt độ lúc buổi đêm của ngày mùa hè đó là: 30 + 3 – 5 = 28 (°C).

Vậy nhiệt độ lúc buổi đêm của ngày mùa hè khi t = 30 và y = 5 là 28 °C.

Giải SBT Toán 7 trang 38 Tập 2

Bài 5 trang 38 sách bài tập Toán lớp 7 Tập 2: Viết biểu thức đại số biểu thị:

a) Tổng các bình phương của x và y;

b) Tổng của x và y bình phương;

c) Tổng các lập phương của x và y;

d) Lập phương của tổng x và y.

Lời giải:

a) Biểu thức đại số biểu thị bình phương của x là: x2;

Biểu thức đại số biểu thị bình phương của y là: y2;

Vậy biểu thức đại số biểu thị tổng các bình phương của x và y là: x2 + y2.

b) Biểu thức đại số biểu thị y bình phương là: y2;

Vậy biểu thức đại số biểu thị tổng của x và y bình phương là: x + y2.

c) Biểu thức đại số biểu thị lập phương của x là: x3;

Biểu thức đại số biểu thị lập phương của y là: y3;

Vậy biểu thức đại số biểu thị tổng các lập phương của x và y là: x3 + y3.

d) Biểu thức đại số biểu thị tổng x và y là: x + y;

Vậy biểu thức đại số biểu thị lập phương của tổng x và y là: (x + y)3.

Bài 6 trang 38 sách bài tập Toán lớp 7 Tập 2:

a) Biểu thức đại số biểu thị diện tích của hình thang có đáy lớn 2a (m), đáy bé b (m), đường cao 2h (m) là:

A. (a + b) . h (m2);

B. 12(2a + b) . h (m2) ;

C. (2a + b) . h (m2);

D. (a + 2b) . h (m2).

b) Biểu thức đại số biểu thị tích của tổng x và y với hiệu của x và y là:

A. x + y . x – y;

B. (x + y)(x – y);

C. (x + y)x – y;

D. xy(x + y)(x – y).

Lời giải:

a) Đáp án đúng là: C

Biểu thức đại số biểu thị diện tích của hình thang có đáy lớn 2a (m), đáy bé b (m), đường cao 2h (m) là:

12.(2a + b) . 2h = (2a + b) . h (m2).

Vậy ta chọn C.

b) Đáp án đúng là: B

Biểu thức đại số biểu thị tổng của x và y là x + y.

Biểu thức đại số biểu thị hiệu của x và y là x – y.

Biểu thức đại số biểu thị tích của tổng x và y với hiệu của x và y là: (x + y)(x – y).

Vậy ta chọn B.

Bài 7 trang 38 sách bài tập Toán lớp 7 Tập 2: Cô Hà có x kg mơ. Để làm ô mai mơ gừng chua ngọt, cô Hà cần chuẩn bị thêm lượng đường trắng bằng 12 lượng mơ, lượng gừng tươi bằng 12 lượng mơ, lượng muối bằng 110 lượng mơ.

a) Viết biểu thức biểu thị khối lượng các nguyên liệu cô Hà cần chuẩn bị thêm theo x.

b) Nếu cô Hà có 15 kg mơ để làm ô mai thì khối lượng các nguyên liệu cần chuẩn bị thêm là bao nhiêu?

Lời giải:

a) Cô Hà có x kg mơ.

Lượng đường trắng cô Hà cần chuẩn bị là 12x (kg);

Lượng gừng tươi cô Hà cần chuẩn bị là 12x (kg);

Lượng muối cô Hà cần chuẩn bị là 12x (kg).

Biểu thức biểu thị khối lượng các nguyên liệu cô Hà cần chuẩn bị thêm là:

12x + 12x + 110x (kg).

b) Nếu cô Hà có 15 kg mơ thì x = 15 (kg).

Khi đó ta có khối lượng các nguyên liệu cần chuẩn bị thêm là:

12.15 + 12.15 + 110.15 = 7,5 + 7,5 + 1,5 = 16,5 (kg).

Vậy nếu cô Hà có 15 kg mơ để làm ô mai thì khối lượng các nguyên liệu cần chuẩn bị thêm là 16,5 kg.

Bài 8 trang 38 sách bài tập Toán lớp 7 Tập 2: Một mảnh vườn có dạng hình chữ nhật với chiều dài x (m), chiều rộng bằng 35 chiều dài. Ở giữa vườn người ta xây một cái bể hình tròn đường kính d (m).

a) Viết biểu thức biểu thị diện tích phần đất còn lại của mảnh vườn đó (lấy π = 3,14).

b) Tính diện tích phần đất còn lại của mảnh vườn đó biết x = 35, d = 4.

Lời giải:

a) Chiều dài của mảnh vườn là x (m).

Chiều rộng bằng 35 chiều dài nên chiều rộng của mảnh vườn là 35x (m).

Biểu thức biểu thị diện tích của mảnh vườn hình chữ nhật là: x.35x (m2).

Biểu thức biểu thị diện tích bể hình tròn đường kính d là: π.d22 (m2).

Lấy π = 3,14 ta có diện tích bể hình tròn là 3,14 . d22 (m2).

Khi đó biểu thức biểu thị diện tích phần đất còn lại của mảnh vườn đó là:

x.35x – 3,14 . d22 (m2).

b) Thay x = 35, d = 4 vào biểu thức x.35x – 3,14 . d22 ta được:

35.35.35 – 3,14 . 422 = 735 – 3,14 . 4 = 722,44 (m2).

Vậy diện tích phần đất còn lại của mảnh vườn đó khi x = 35, d = 4 là 722,44 m2.

Bài 9 trang 38 sách bài tập Toán lớp 7 Tập 2: Một khu vườn có dạng hình chữ nhật có chiều dài a (m), chiều rộng ngắn hơn chiều dài 8 (m). Trên khu vườn ấy, bác An đào một cái ao hình vuông có cạnh là b (m) (b < a – 8).

a) Viết biểu thức biểu thị diện tích còn lại của khu vườn đó.

b) Tính diện tích còn lại của khu vườn đó khi a = 50, b = 10.

Lời giải:

a) Khu vườn hình chữ nhật có chiều dài a (m), chiều rộng ngắn hơn chiều dài 8 (m).

Khi đó chiều rộng của khu vườn là: a – 8 (m).

Biểu thức biểu thị diện tích khu vườn là: a . (a – 8) (m2).

Biểu thức biểu thị diện tích cái ao hình vuông cạnh b (m) là: b2 (m2).

Vậy biểu thức biểu thị diện tích còn lại của khu vườn đó là:

a . (a – 8) – b2 (m2).

b) Khi a = 50, b = 10 thay vào biểu thức a . (a – 8) – b2 ta có:

50 . (50 – 8) – 102 = 50 . 42 – 100 = 2 000 (m2).

Vậy diện tích còn lại của khu vườn đó khi a = 50, b = 10 là 2 000 m2.

Giải SBT Toán 7 trang 39 Tập 2

Bài 10 trang 39 sách bài tập Toán lớp 7 Tập 2: Trên mảnh đất có dạng hình chữ nhật với chiều dài là x (m), chiều rộng là y (m), người ta dự định làm một vườn hoa hình chữ nhật và bớt ra một phần đường đi rộng 2 m như ở Hình 2.

Trên mảnh đất có dạng hình chữ nhật với chiều dài là x (m), chiều rộng là y (m)

a) Viết biểu thức biểu thị chu vi và diện tích của vườn hoa trên mảnh đất đó.

b) Tính chu vi và diện tích của vườn hoa trên mảnh đất đó, biết x = 15, y = 10.

Lời giải:

a) Chiều dài của vườn hoa trên mảnh đất đó là: x – 2 – 2 = x – 4 (m).

Chiều rộng của vườn hoa trên mảnh đất đó là: y – 2 – 2 = y – 4 (m).

Biểu thức biểu thị chu vi của vườn hoa trên mảnh đất đó là:

2[(x – 4) + (y – 4)] = 2(x + y – 8) (m).

Biểu thức biểu thị diện tích của vườn hoa trên mảnh đất đó là:

(x – 4)(y – 4) (m2).

b) Thay x = 15, y = 10 vào biểu thức biểu thị chu vi của vườn hoa ta có:

2 . (15 + 10 – 8) = 2 . 17 = 34 (m).

Thay x = 15, y = 10 vào biểu thức biểu thị diện tích của vườn hoa ta có:

(15 – 4) . (10 – 4) = 11 . 6 = 66 (m2).

Vậy khi x = 15, y = 10 thì chu vi và diện tích của vườn hoa lần lượt là 34 m và 66 m2.

Bài 11 trang 39 sách bài tập Toán lớp 7 Tập 2: Viết biểu thức đại số biểu thị:

a) Khối lượng của một vật có thể tích V (m3) và khối lượng riêng D (kg/m3);

b) Diện tích của tam giác vuông có hai cạnh góc vuông là a (cm) và b (cm);

c) Sản lượng lúa thu hoạch được trên một ruộng lúa có diện tích là x (ha) và năng suất lúa là y (tạ/ha).

Lời giải:

a) Biểu thức đại số biểu thị khối lượng của một vật có thể tích V (m3) và khối lượng riêng D (kg/m3) là V . D (kg).

b) Biểu thức đại số biểu thị diện tích của tam giác vuông có hai cạnh góc vuông là a (cm) và b (cm) là 12ab (cm2).

c) Biểu thức đại số biểu thị sản lượng lúa thu hoạch được trên một ruộng lúa có diện tích là x (ha) và năng suất lúa là y (tạ/ha) là: xy (tạ).

Bài 12 trang 39 sách bài tập Toán lớp 7 Tập 2: Một ngôi nhà có ba phòng: sàn phòng khách có dạng hình vuông cạnh a (m), sàn phòng ngủ và sàn phòng bếp có dạng hình chữ nhật với cùng chiều dài a (m) và cùng chiều rộng b (m) (a > b). Viết biểu thức biểu thị tổng diện tích ba mặt sàn trên của ngôi nhà đó.

Lời giải:

Biểu thức biểu thị diện tích mặt sàn phòng khách dạng hình vuông cạnh a (m) là a2 (m2).

Biểu thức biểu thị diện tích mặt sàn phòng ngủ dạng hình chữ nhật chiều dài a (m) và chiều rộng b (m) là ab (m2).

Do sàn phòng ngủ và sàn phòng bếp có dạng hình chữ nhật có cùng kích thước nên diện tích mặt sàn phòng bếp là ab (m2).

Biểu thức biểu thị tổng diện tích ba mặt sàn trên của ngôi nhà đó là:

a2 + ab + ab = a2 + 2ab (m2).

Bài 13 trang 39 sách bài tập Toán lớp 7 Tập 2: Tính giá trị của mỗi biểu thức sau:

a) A = 3,2x2y3 tại x = 1, y = –1;

b) B = 3m – 2n tại m = –1, n = 2;

c) C = 7m + 2n – 5 tại m = –2, n = 12;

d) D = 3x2 – 5y + 1 tại x = 3, y = –1.

Lời giải:

a) Thay x = 1, y = –1 vào biểu thức A = 3,2x2y3 ta có:

A = 3,2 . 12 . (–1)3 = 3,2 . 1 . (–1) = –3,2.

Vậy với x = 1, y = –1 thì A = –3,2.

b) Thay m = –1, n = 2 vào biểu thức B = 3m – 2n ta có:

B = 3 . (–1) – 2 . 2 = – 3 – 4 = –7.

Vậy với m = –1, n = 2 thì B = –7.

c) Thay m = –2, n = 12 vào biểu thức C = 7m + 2n – 5 ta có:

C = 7 . (–2) + 2 . 12 – 5 = –14 – 1 – 5 = –20.

Vậy với m = –2, n = 12 thì C = –20.

d) Thay x = 3, y = –1 vào biểu thức D = 3x2 – 5y + 1 ta có:

D = 3 . 32 – 5 . (–1) + 1 = 3 . 3 + 5 + 1 = 15.

Vậy với x = 3, y = –1 thì D = 15.

Bài 14 trang 39 sách bài tập Toán lớp 7 Tập 2: Tìm số nguyên x để biểu thức:

a) A = 150x (với x ≠ 50) đạt giá trị lớn nhất.

b) B = 4x8 (với x ≠ 8) đạt giá trị nhỏ nhất.

Lời giải:

a) Với x là số nguyên, x ≠ 50 ta xét hai trường hợp

• Trường hợp 1: Xét x ≤ 49, ta có 50 – x ≥ 1 > 0 nên A = 150x > 0.

Biểu thức A có tử và mẫu đều dương, tử không đổi nên A lớn nhất nếu mẫu 50 − x là số nguyên dương nhỏ nhất, tức là 50 − x = 1.

Suy ra x = 49, khi đó A = 1.

• Trường hợp 2: Xét x ≥ 51, ta có 50 – x ≤ –1 < 0 nên A = 150x < 0.

Khi đó A < 1 (mà 1 là giá trị lớn nhất của A ở trường hợp 1) nên trường hợp này không thể có giá trị của x để A lớn nhất.

Vậy với các số x nguyên (x ≠ 50) thì giá trị lớn nhất của A bằng 1 khi x = 49.

b) Với x là số nguyên, x ≠ 8 ta xét hai trường hợp:

• Trường hợp 1: Xét x ≤ 7, ta có x – 8 ≤ –1 < 0 nên B = 4x8 < 0.

Số âm B có giá trị nhỏ nhất khi số đối của nó là lớn nhất.

Do đó 4x8 (với –(x – 8) ≥ 1 > 0) đạt giá trị lớn nhất.

Biểu thức trên có tử dương và mẫu dương nên đạt giá trị lớn nhất nếu mẫu –(x – 8) là số nguyên dương nhỏ nhất, tức là –(x – 8) = 1.

Suy ra x = 7, khi đó B = –4.

• Trường hợp 2: Xét x ≥ 9, ta có x – 8 ≥ 1 > 0 nên B = 4x8 > 0.

Khi đó B > –4 (mà –4 là giá trị nhỏ nhất của B ở trường hợp 1) nên trường hợp này không thể có giá trị của x để B nhỏ nhất.

Vậy với các số x nguyên (x ≠ 8) thì giá trị nhỏ nhất của B là – 4 khi x = 7.

Bài 15 trang 39 sách bài tập Toán lớp 7 Tập 2: Để đánh giá thể trạng của một người, người ta thường dùng chỉ số BMI. Chỉ số BMI được tính bằng công thức: BMI = mh2 (chỉ số này thường được làm tròn đến hàng phần mười) với m là cân nặng (tính theo ki-lô-gam) và h là chiều cao (tính theo mét). Nếu 18,5 ≤ BMI ≤ 22,9 thì được coi là thể trạng bình thường đối với người trên 20 tuổi. Hai chị Hằng và Bình (25 tuổi) có các số đo cân nặng và chiều cao như sau:

Để đánh giá thể trạng của một người, người ta thường dùng chỉ số BMI

Trong hai chị Hằng và Bình, người nào đạt thể trạng bình thường?

Lời giải:

Đổi 152 cm = 1,52 m;

160 cm = 1,6 m.

Chỉ số BMI của chị Hằng là: 501,522 ≈ 21,6.

Chỉ số BMI của chị Bình là: 721,62 ≈ 28,1.

Ta có 18,5 ≤ 21,6 ≤ 22,9 và 28,1 > 22,9.

Do đó chị Hằng đạt thể trạng bình thường.

Vậy chị Hằng đạt thể trạng bình thường.

Bài 16 trang 40 sách bài tập Toán lớp 7 Tập 2: Bạn Nguyên đã mua 5 quyển vở, giá mỗi quyển là 7 000 đồng và mua x chiếc bút chì, giá mỗi chiếc là 4 000 đồng.

a) Viết biểu thức biểu thị số tiền bạn Nguyên phải trả.

b) Bạn Đức chỉ mua bút chì và mua nhiều hơn bạn Nguyên 5 chiếc bút chì cùng loại với giá 4 000 đồng/ chiếc. Viết biểu thức biểu thị số tiền bạn Đức phải trả.

Lời giải:

a) Bạn Nguyên mua 5 quyển vở, giá mỗi quyển là 7 000 đồng nên phải trả số tiền là:

5 . 7 000 = 35 000 (đồng).

Bạn Nguyên mua x chiếc bút chì, giá mỗi chiếc là 4 000 đồng nên phải trả số tiền là:

4 000x (đồng).

Vậy biểu thức biểu thị số tiền bạn Nguyên phải trả là: 35 000 + 4 000x (đồng).

b) Số chiếc bút chì bạn Đức mua là: x + 5 (chiếc).

Số tiền bạn Đức phải trả khi mua x + 5 chiếc bút chì là:

4 000 . (x + 5) (đồng).

Vậy biểu thức biểu thị số tiền bạn Đức phải trả là 4 000 . (x + 5) (đồng).

Xem thêm các bài giải SBT Toán lớp 7 Cánh diều hay, chi tiết khác:

SBT Toán 7  Bài tập cuối chương 5

SBT Toán 7 Bài 1 : Biểu thức số. Biểu thức đại số

SBT Toán 7 Bài 2 : Đa thức một biến. Nghiệm của đa thức một biến 

SBT Toán 7 Bài 3 : Phép cộng, phép trừ đa thức một biến

SBT Toán 7 Bài 4 : Phép nhân đa thức một biến

Lý thuyết Biểu thức số. Biểu thức đại số

I. Biểu thức số

– Các số được nối với nhau bởi dấu các phép tính (cộng, trừ, nhân, chia, nâng lên luỹ thừa) tạo thành một biểu thức số. Đặc biệt, mỗi số cũng được coi là một biểu thức số.

– Trong biểu thức số có thể có các dấu ngoặc để chỉ thứ tự thực hiện các phép tính.

– Khi thực hiện các phép tính trong một biểu thức số, ta nhận được một số. Số đó được gọi là giá trị của biểu thức số đã cho.

Ví dụ: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) 2022 không phải là biểu thức số.

b) Biểu thức số phải có đầy đủ các phép tính cộng, trừ, nhân, chia, nâng lên luỹ thừa.

Hướng dẫn giải

a) Sai. Vì một số cũng được coi là một biểu thức số nên 2022 là biểu thức số.

b) Sai. Vì trong biểu thức số không nhất thiết phải có đầy đủ các phép tính cộng, trừ, nhân, chia, nâng lên luỹ thừa.

Chẳng hạn: 22 + 1 chỉ có phép nâng lên luỹ thừa và phép cộng cũng là một biểu thức số.

Ví dụ: Viết biểu thức số biểu thị:

a) Chu vi hình chữ nhật có chiều dài là 30 cm, chiều rộng là 20 cm.

b) Diện tích của hình tròn có bán kính 40 cm.

Hướng dẫn giải:

a) Biểu thức biểu thị chu vi hình chữ nhật có chiều dài 30 cm, chiều rộng 20 cm là:

2(30 + 20) (cm).

b) Biểu thức biểu thị diện tích hình tròn có bán kính 40 cm là: p. 402 (cm2).

Ví dụ: Một trường THCS cử một đoàn giáo viên tham gia tập huấn gồm: 1 trưởng đoàn, mỗi khối 6, 7, 8, 9 đều có 2 giáo viên toán, 1 giáo viên văn. Biểu thức số nào dưới đây biểu thị tổng số thành viên của đoàn?

a) 1 + 4. 2 + 1 (thành viên);

b) 1 + 4. (2 + 1) (thành viên).

Hướng dẫn giải

Biểu thức biểu thị số thành viên của mỗi khối là: 2 + 1 (thành viên).

Biểu thức biểu thị số thành viên của 4 khối là: 4. (2 + 1) (thành viên).

Biểu thức biểu thị tổng số thành viên của đoàn là: 1 + 4. (2 + 1) (thành viên).

II. Biểu thức đại số

– Biểu thức gồm các số và các biến số (đại diện cho số) được nối với nhau bởi các kí hiệu phép toán cộng, trừ, nhân, chia, nâng lên luỹ thừa được gọi là biểu thức đại số.

– Biểu thức số cũng là biểu thức đại số.

– Trong biểu thức đại số có thể có các dấu ngoặc để chỉ thứ tự thực hiện các phép tính.

– Chú ý: Để cho gọn, khi viết các biểu thức đại số ta thường:

+ Không viết dấu nhân giữa các chữ, cũng như giữa số và chữ.

Chẳng hạn: viết xy thay cho x.y; viết 2x thay cho 2.x.

+ Viết x thay cho 1. x; viết –x thay cho (–1). x.

– Trong biểu thức đại số, vì chữ đại diện cho số nên khi thực hiện các phép tính trên các chữ, ta có thể áp dụng những tính chất, quy tắc phép tính như trên các số.

Chẳng hạn:

2x + x = 3x;           5x – 2x = 3x;                             

x.x2 = x3;                x + y = y + x;        

xy = yx;                 x(yz) = (xy)z;                            

x + (y + z) = (x + y) + z;           

x(y + z) = xy + xz;

–x(y – z) = –xy + xz; …

Ví dụ: Trong các biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) 2. 3 – 3. 5 là biểu thức đại số;

b) 3x2 + 5x + 2 là biểu thức đại số;

c) 2x + 3y + z không phải là biểu thức đại số.

Hướng dẫn giải:

a) Đúng. Vì 2. 3 – 3. 5 là biểu thức số nên cũng là biểu thức đại số;

b) Đúng. Vì 3x2 + 5x + 2 được nối với nhau bởi các phép toán và x đại diện cho số nên biểu thức này là biểu thức đại số.

c) Sai. Vì 2x + 3y + z được nối với nhau bởi các phép toán và x, y, z đại diện cho các số nên biểu thức này là biểu thức đại số.

Ví dụ: Viết biểu thức biểu thị diện tích toàn phần (tổng diện tích tất cả các mặt) của hình hộp chữ nhật có ba kích thước là 4 (cm), x (cm), y (cm) như hình vẽ dưới đây:

Biểu thức số. Biểu thức đại số (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

Hướng dẫn giải:

Diện tích xung quanh của hình hộp chữ nhật là:

2(4 + x). y (cm2)

Diện tích đáy của hình hộp chữ nhật là: 4x (cm2)

Diện tích toàn phần của hình hộp chữ nhật là:

2(4 + x). y + 2.4x (cm2)

Vậy biểu thức biểu thị diện tích toàn phần của hình hộp chữ nhật trên là: 2(4 + x). y + 2.4x (cm2).

III. Giá trị của biểu thức đại số

Để  tính  giá  trị  của  một  biểu  thức  đại  số  tại  những giá trị cho trước của các biến, ta thay các giá trị cho trước đó vào biểu thức rồi thực hiện các phép tính.

Ví dụ: Tính giá trị của biểu thức x2 – 5y + 1 khi x = 4 và y = 2.

Hướng dẫn giải

Thay x = 4 và y = 2 vào biểu thức trên ta được:

42 – 5.2 + 1 = 16 – 10 + 1 = 7

Vậy khi x = 4 và y = 2 thì giá trị của biểu thức x2 – 5y + 1 bằng 7.

Ví dụ: Bác Hoa mua một túi rau và một số quả cam. Biết rằng mỗi kilôgam cam có giá 40 nghìn đồng và túi rau có giá 15 nghìn đồng.

a) Hãy viết biểu thức biểu thị tổng số tiền bác Hoa phải trả nếu số cam bác Hoa mua là x kilôgam.

b) Giả sử số cam bác Hoa mua là 2,5 kilôgam. Sử dụng kết quả câu a, em hãy tính xem bác Hoa phải trả tất cả bao nhiêu tiền.

Hướng dẫn giải

a) Số tiền bác Hoa phải trả cho x kilôgam cam là 40x (nghìn đồng).

Số tiền bác Hoa phải trả cho một túi rau là 15 nghìn đồng.

Vậy biểu thức biểu thị tổng số tiền bác Hoa phải trả là:

40x + 15 (nghìn đồng)

b) Thay x = 2,5 vào biểu thức 40x + 15, ta được:

40. 2,5 + 15 = 115 (nghìn đồng)

Vậy bác Hoa phải trả tất cả là 115 nghìn đồng.

Đánh giá

0

0 đánh giá