Bài 4 trang 45 Toán 10 Tập 2 | Cánh diều Giải toán lớp 10

1.7 K

Với giải Bài 4 trang 45 SGK Toán lớp 10 Cánh diều chi tiết trong Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản

Bài 4 trang 45 Toán lớp 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:

a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;

b) “Mặt 1 chấm xuất hiện ít nhất một lần”.

Lời giải:

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

a) Gọi biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

(Không bé hơn 10, có nghĩa là lớn hơn hoặc bằng 10).

Các kết quả thuận lợi cho biến cố A là: (4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6).

Hay A = {(4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6)}.

Vì thế n(A) = 6.

Vậy xác xuất của biến cố A là: PA=nAnΩ=636=16.

b) Gọi biến cố B: “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả thuận lợi cho biến cố B là: (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1).

Hay B = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1)}. Vì thế n(B) = 11.

Vậy xác xuất của biến cố B là: PB=nBnΩ=1136.

Đánh giá

0

0 đánh giá