Giải SGK Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến

3.2 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 7 Bài 4: Phép nhân đa thức một biến chi tiết sách Toán 7 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 4: Phép nhân đa thức một biến

A. Câu hỏi

Giải Toán 7 trang 60 Tập 2

Câu hỏi khởi động trang 60 Toán 7 Tập 2: Trong quá trình biến đổi và tính toán những biểu thức đại số, nhiều khi ta phải thực hiện phép nhân hai đa thức một biến, chẳng hạn ta cần thực hiện phép nhân sau:

(x – 1)(x2 + x + 1).

Làm thế nào để thực hiện được phép nhân hai đa thức một biến?

Lời giải:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.

Hoạt động 1 trang 60 Toán 7 Tập 2: Thực hiện phép tính:

a) x2 . x4;

b) 3x2 . x3;

c) axm . bxn (a ≠ 0; b ≠ 0; m, n ∈ ℕ).

Lời giải:

a) x2 . x4 = x2+4 = x6.

Vậy x2 . x4 = x6.

b) 3x2 . x3 = 3x2+3 = 3x5.

Vậy 3x2 . x3 = 3x5.

c) axm . bxn = a . b . xm . xn = abxm+n (a ≠ 0; b ≠ 0; m, n ∈ ℕ).

Vậy axm . bxn = abxm+n với a ≠ 0; b ≠ 0; m, n ∈ ℕ.

Luyện tập 1 trang 60 Toán 7 Tập 2: Tính:

a) 3x5 . 5x8;

b) -2xm+2 . 4xn-2 (m, n ∈ ℕ; n > 2).

Lời giải:

a) Ta có: 3x5 . 5x8 = 3 . 5 . x5 . x8 = 15 . x5+8 = 15x13.

Vậy 3x5 . 5x8 = 15x13.

b) Ta có:

-2xm+2 . 4xn-2 

= -2 . 4 . xm+2 . xn-2

= -8 . xm+2+n-2

= -8xm+n  (m, n ∈ ℕ; n > 2).

Vậy -2xm+2 . 4xn-2 = -8xm+n  (m, n ∈ ℕ; n > 2).

Hoạt động 2 trang 60 Toán 7 Tập 2: Quan sát hình chữ nhật MNPQ ở Hình 3.

Giải Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến (ảnh 1) 

a) Tính diện tích mỗi hình chữ nhật (I), (II);

b) Tính diện tích của hình chữ nhật MNPQ;

c) So sánh: a(b + c) và ab + ac.

Lời giải:

a) Diện tích hình chữ nhật (I) là ab (đơn vị diện tích).

Diện tích hình chữ nhật (II) là ac (đơn vị diện tích).

b) Quan sát Hình 3 ta thấy chiều dài của hình chữ nhật MNPQ là b + c.

Do đó diện tích hình chữ nhật MNPQ là a(b + c) (đơn vị diện tích).

c) Quan sát Hình 3 ta thấy hình chữ nhật MNPQ là hình được ghép bởi hình chữ nhật (I) và hình chữ nhật (II).

Do đó diện tích hình chữ nhật MNPQ bằng tổng diện tích hai hình chữ nhật (I) và (II) là: ab + ac (đơn vị diện tích).

 Vậy a(b + c) = ab  +ac.

Giải Toán 7 trang 61 Tập 2

Hoạt động 3 trang 61 Toán 7 Tập 2: Cho đơn thức P(x) = 2x và đa thức Q(x) = 3x2 + 4x + 1.

a) Hãy nhân đơn thức P(x) với từng đơn thức của đa thức Q(x).

b) Hãy cộng các tích vừa tìm được:

Lời giải:

a) Đa thức Q(x) = 3x2 + 4x + 1 nên các đơn thức của đa thức Q(x) là 3x2; 4x; 1.

Nhân đơn thức P(x) với từng đơn thức của đa thức Q(x) như sau:

2x . 3x2 = 2 . 3 . x . x2 = 6 . x1+2 = 6x3.

2x . 4x = 2 . 4 . x . x = 8 . x1+1 = 8x2.

2x . 1 = 2x.

b) Cộng các tích vừa tìm được ta có:

2x . 3x2 + 2x . 4x + 2x . 1

= 6x3 + 8x2 + 2x.

Luyện tập 2 trang 61 Toán 7 Tập 2: Tính:

a) 12x(6x4);

b) x213x2x14.

Lời giải:

a) 12x(6x4)=12x . 6x12x . 412= = 3.x1+1  ‒ 2x = 3x2 - 2x.

b) x213x2x14=x2.13x2x2.xx2.14

=13x2+2+x2+1+14x2=13x4+x3+14x2. 

Hoạt động 4 trang 61 Toán 7 Tập 2: Quan sát hình chữ nhật MNPQ ở Hình 4.

Giải Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến (ảnh 1) 

a) Tính diện tích mỗi hình chữ nhật (I), (II), (III), (IV).

b) Tính diện tích của hình chữ nhật MNPQ.

c) So sánh: (a + b)(c + d) và ac + ad + bc + bd.

Lời giải:

a) Diện tích hình chữ nhật (I) là ac (đơn vị diện tích).

Diện tích hình chữ nhật (II) là ad (đơn vị diện tích).

Diện tích hình chữ nhật (III) là bc (đơn vị diện tích).

Diện tích hình chữ nhật (IV) là bd (đơn vị diện tích).

b) Quan sát Hình 4 ta có chiều rộng của hình chữ nhật MNPQ là a + b.

Chiều dài của hình chữ nhật MNPQ là c + d.

Diện tích hình chữ nhật MNPQ là (a + b)(c + d) (đơn vị diện tích).

c) Diện tích hình chữ nhật MNPQ bằng tổng diện của bốn hình chữ nhật (I), (II), (III), (IV) là: ac + ad + bc + bd (đơn vị diện tích).

Vậy (a + b)(c +  d) = ac + ad + bc + bd.

Giải Toán 7 trang 62 Tập 2

Hoạt động 5 trang 62 Toán 7 Tập 2: Cho đa thức P(x) = 2x + 3 và đa thức Q(x) = x + 1.

a) Hãy nhân mỗi đơn thức của đa thức P(x) với từng đơn thức của đa thức Q(x).

b) Hãy cộng các tích vừa tìm được.

Lời giải:

a) Đa thức P(x) = 2x + 3 có các đơn thức là 2x; 3.

Đa thức Q(x) = x + 1 có các đơn thức là x; 1.

+ Nhân đơn thức 2x của đa thức P(x) với từng đơn thức của đa thức Q(x) như sau:

2x . x = 2x2;

2x . 1 = 2x;

+ Nhân đơn thức 3 của đa thức P(x) với từng đơn thức của đa thức Q(x) như sau:

3 . x = 3x;

3 . 1 = 3.

b) Cộng các tích vừa tìm được:

2x . x + 2x . 1 + 3 . x + 3 . 1

= 2x2 + 2x + 3x + 3

= 2x2 + (2x + 3x) + 3

= 2x2 + 5x + 3.

Luyện tập 3 trang 62 Toán 7 Tập 2: Tính:

a) (x2 - 6)(x2 + 6);

b) (x - 1)(x2 + x + 1).

Lời giải:

a) (x2 - 6)(x2 + 6)

= x2 . x2 + x2 . 6 - 6 . x2 - 6 . 6

= x4 + 6x2 – 6x2 – 36

= x4 + (6x2 – 6x2) – 36

= x4 - 36.

Vậy (x2 - 6)(x2 + 6) = x4 - 36.

b) (x - 1)(x2 + x + 1)

= x . x2 + x . x + x . 1 - 1 . x2 - 1 . x - 1 . 1

= x3 + x2 + x - x2 - x - 1

= x3 + (x2 - x2) + (x - x) - 1

= x3 - 1

Vậy (x - 1)(x2 + x + 1) = x3 - 1.

B. Bài tập

Giải Toán 7 trang 63 Tập 2

Bài 1 trang 63 Toán 7 Tập 2: Tính:

a) 12x2.65x3; 

b) y257y32y2+0,25;

c) (2x2 + x + 4)(x2 - x - 1);

d) (3x - 4)(2x + 1) - (x - 2)(6x + 3).

Lời giải:

a) 12x2.65x3

=12.65.x2.x3 

=1.2.32.5.x2+3 

=35x5.

b) y257y32y2+0,25

=y2.57y3y2.2y2+y2.0,25 

=57.y2+32y2+2+25100y2

=57.y52y4+14y2 

c) (2x2 + x + 4)(x2 - x - 1)

= 2x2 . x2 - 2x2 . x - 2x2 . 1 + x . x2 - x . x - x . 1 + 4 . x2 - 4 . x - 4 . 1

= 2x2+2  - 2x2+1  - 2x2 + x1+2 - x1+1 - x + 4x2 - 4x - 4

= 2x4 - 2x3 - 2x2 + x3 - x2 - x + 4x2 - 4x - 4

= 2x4 + (-2x3 + x3) + (-2x2 - x2+ 4x2) + (-x - 4x) - 4

= 2x4 - x3 + x2 - 5x - 4.

d) (3x - 4)(2x + 1) - (x - 2)(6x + 3)

= (3x . 2x + 3x . 1 - 4 . 2x - 4 . 1) - (x . 6x + x . 3 - 2 . 6x - 2 . 3)

= 6x2 + 3x - 8x - 4 - (6x2 + 3x - 12x - 6)

= 6x2 + (3x - 8x) - 4 - [6x2 + (3x −12x) - 6]

= 6x2 - 5x - 4 - (6x2 - 9x - 6)

= 6x2 - 5x - 4 - 6x2 + 9x + 6

= (6x2 - 6x2) + (-5x + 9x) + (-4 + 6)

= 4x + 2.

Bài 2 trang 63 Toán 7 Tập 2: Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau:

a) P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2);

b) Q(x) = (x5 - 5)(-2x6 - x3 + 3).

Lời giải:

a) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2)

= [-2x2 + (-3x + x) - 1].(3x2 - x - 2)

= (-2x2 - 2x - 1)(3x2 - x - 2)

= -2x2.3x2 - (-2x2).x - (-2x2).2 - 2x.3x2 - 2x.(-x) - 2x.(-2) - 1.3x2 - 1.(-x) - 1.(-2)

= -6x4 + 2x3 + 4x2 - 6x3 + 2x2 + 4x - 3x2 + x + 2

= -6x4 + (2x3 - 6x3) + (4x2 + 2x2 - 3x2) + (4x + x) + 2

= -6x4 + (2 – 6)x3 + (4 + 2 – 3)x2 + (4 + 1)x + 2

= -6x4 - 4x3 + 3x2 + 5x + 2

Vậy đa thức P(x) có bậc bằng 4, hệ số cao nhất bằng -6 và hệ số tự do bằng 2.

b) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

Q(x) = (x5 - 5)(-2x6 - x3 + 3)

= x5 . (-2x6) - x5 . x3 + x5 . 3 - 5 . (-2x6) - 5 . (-x3) - 5 . 3

= -2x11 - x8 + 3x5 + 10x6 + 5x3 - 15

= -2x11 - x8 + 10x6 + 3x5 + 5x3 - 15

Khi đó đa thức Q(x) có bậc bằng 11, hệ số cao nhất bằng -2 và hệ số tự do bằng -15.

Bài 3 trang 63 Toán 7 Tập 2: Xét đa thức P(x) = x2(x2 + x + 1) - 3x(x - a) + 14 (với a là một số).

a) Thu gọn đa thức P(x) rồi sắp xếp đa thức đó theo số mũ giảm dần của biến.

b) Tìm a sao cho tổng các hệ số của đa thức P(x) bằng 52.

Lời giải:

a) Ta có:

P(x) = x2(x2 + x + 1) - 3x(x - a) + 14

= x2 . x2 + x2 . x + x2 . 1 - (3x . x - 3x .a) + 14

= x4 + x3 + x2 - (3x2 - 3ax) + 14

= x4 + x3 + x2 - 3x2 + 3ax + 14

= x4 + x3 + (x2 - 3x2) + 3ax + 14

= x4 + x3 - 2x2 + 3ax + 14

Vậy P(x) = x4 + x3 - 2x2 + 3ax + 14

b) Ta có đa thức P(x) = x4 + x3 - 2x2 + 3ax + 14 có các hệ số là: 1; 1; -2; 3a; 14 

Tổng các hệ số của đa thức P(x) là: 1+1+2+3a+14=3a+14 

Do tổng các hệ số của đa thức P(x) bằng 52 nên ta có 3a + 14 = 52.

Suy ra 3a=5214=10414=94.

Do đó a=94:3=94.13=34.

Vậy a=34. 

Bài 4 trang 63 Toán 7 Tập 2: Từ tấm bìa hình chữ nhật có kích thước 20 cm và 30 cm, bạn Quân cắt đi ở mỗi góc của tấm bìa một hình vuông sao cho bốn hình vuông bị cắt đi có cùng độ dài cạnh, sau đó gấp lại để tạo thành hình hộp chữ nhật không nắp (Hình 5).

Giải Toán 7 Bài 4 (Cánh diều): Phép nhân đa thức một biến (ảnh 1) 

Viết đa thức biểu diễn thể tích của hình hộp chữ nhật được tạo thành theo độ dài cạnh của hình vuông bị cắt đi.

Lời giải:

Gọi độ dài cạnh của hình vuông bị cắt đi là x (cm).

Ta thấy độ dài hai cạnh đáy của hình hộp chữ nhật là chiều dài và chiều rộng của hình chữ nhật sau khi cắt đi 2 hình vuông, chiều cao của hình hộp chữ nhật là độ dài cạnh của hình vuông.

Khi đó ta có:

- Chiều dài của hình chữ nhật sau khi cắt đi 2 hình vuông là 30 - 2a (cm).

- Chiều rộng của hình chữ nhật sau khi cắt đi 2 hình vuông là 20 - 2a (cm).

Do đó thể tích của hình hộp chữ nhật đó là: a(30 - 2a)(20 - 2a) (cm3).

Bài 5 trang 63 Toán 7 Tập 2: Bạn Hạnh bảo với bạn Ngọc:

“- Nếu bạn lấy tuổi của một người bất kì cộng thêm 5;

- Được bao nhiêu đem nhân với 2;

- Lấy kết quả đó cộng với 10;

- Nhân kết quả vừa tìm được với 5;

- Đọc kết quả cuối cùng sau khi trừ đi 100. Mình sẽ đoán được tuổi của người đó.”

Em hãy sử dụng kiến thức nhân đa thức để giải thích vì sao bạn Hạnh lại đoán được tuổi người đó.

Lời giải:

Gọi tuổi của người đó là x (tuổi) (x > 0).

- Nếu lấy tuổi của người đó cộng thêm 5 ta được: x + 5.

- Nhân kết quả vừa tìm được với 2 ta có: (x + 5).2 = x.2 + 5.2 = 2x + 10.

- Lấy kết quả đó cộng với 10 ta được: 2x + 10 + 10 = 2x + 20.

- Nhân kết quả vừa tìm được với 5 ta có: (2x + 20).5 = 2x.5 + 20.5 = 10x + 100.

- Lấy kết quả trừ đi 100 ta được: 10x + 100 - 100 = 10x.

Do đó kết quả cuối cùng bằng 10 lần tuổi của người đó. Đó là lí do vì sao bạn Hạnh lại đoán được tuổi của người đó.

Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:

Giải SGK Toán 7 Bài 3: Phép cộng, phép trừ đa thức một biến

Giải SGK Toán 7 Bài 4: Phép nhân đa thức một biến

Giải SGK Toán 7: Bài tập cuối chương 6

Giải SGK Toán 7 Bài 1: Tổng các góc của một tam giác

Giải SGK Toán 7 Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Lý thuyết Phép nhân đa thức một biến

1. Nhân đơn thức với đơn thức

– Muốn nhân đơn thức A với đơn thức B, ta làm như sau:

+ Nhân hệ số của đơn thức A với hệ số của đơn thức B;

+ Nhân luỹ thừa của biến A với luỹ thừa của biến đó trong B;

+ Nhân các kết quả vừa tìm được với nhau.

– Tổng quát: Với a ≠ 0, b ≠ 0; m, n  ℕ ta có:

axm. bxn = a.b. xm. xn = abxm + n.

Ví dụ: Tính:

a) 3x2. 5x6;

b) – 4x3. 4x2;

c) 2xm + 2. xn – 2 (m, n  ℕ, n > 2).

Hướng dẫn giải

a) 3x2. 5x6 = 3.5. x2. x6 = 15x2 + 6 = 15x8;

b) – 4x3. 4x2 = – 4.4. x3. x2 = –16x3 + 2 = –16x5;

c) 2xm + 2. xn – 2 = 2. xm + 2. xn – 2 = 2xm + 2 + n – 2 = 2xm + n.

2. Nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các tích với nhau.

A(B + C) = AB + AC

A(B – C) = AB – AC

Ví dụ: Tính:

a) x(2x + 1);

b) –2x2(2x2 + 2x – 1);

c) –2x3(12x2 + 3x – 5).

Hướng dẫn giải

a) x(2x + 1) = x.2x + x.1 = 2x2 + x;

b) –2x2(2x2 + 2x – 1)

= –2x2.2x2 –2x2.2x –2x2.(–1)

= –4x4 – 4x3 + 2x2;

c) –2x3(12x2 + 3x – 5)

= –2x3.12x2 –2x3.3x – 2x3.(–5)

= –x5 – 6x4 + 10x3.

3. Nhân đa thức với đa thức

– Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.

(A + B)(C + D) = AC + AD + BC + BD

– Tích của hai đa thức là một đa thức.

– Sau khi thực hiện phép nhân hai đa thức, ta thường viết đa thức tích ở dạng thu gọn và sắp xếp các đơn thức theo số mũ tăng dần hoặc giảm dần của biến.

Ví dụ: Thực hiện phép nhân (4x – 3)(2x2 – 5x + 6).

Hướng dẫn giải

Ta có: (4x – 3)(2x2 – 5x + 6)

= 4x(2x2 – 5x + 6) – 3(2x2 – 5x + 6)

= 4x.2x2 – 4x.5x + 4x.6 – 3.2x2 – 3.(–5x) – 3.6

= 8x3 – 20x2 + 24x – 6x2 + 15x – 18

= 8x3 – 26x2 + 39x – 18

Vậy (4x – 3)(2x2 – 5x + 6) = 8x3 – 26x2 + 39x – 18.

– Chúng ta có thể trình bày phép nhân đa thức theo cột dọc.

Chú ý: Khi thực hiện phép nhân hai đa thức theo cột dọc, các đơn thức có cùng số mũ (của biến) được xếp vào cùng một cột.

Ví dụ: Thực hiện phép nhân (4x – 3)(2x2 – 5x + 6) theo cột dọc.

Hướng dẫn giải

Ta có: (4x – 3)(2x2 – 5x + 6) = (2x2 – 5x + 6).(4x – 3)

Thực hiện phép nhân theo cột dọc như sau:

×              2x2    5x  +    6                               4x      3¯             6x2+15x188x320x2+24x¯8x326x2+39x18

Vậy (4x – 3)(2x2 – 5x + 6) = 8x3 – 26x2 + 39x – 18.

Đánh giá

0

0 đánh giá