Bài 2 trang 63 Toán 7 Tập 2 | Cánh diều Giải toán lớp 7

1.6 K

Với giải Bài 2 trang 63 Toán lớp 7 Cánh diều chi tiết trong Bài 4: Phép nhân đa thức một biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 4: Phép nhân đa thức một biến

Bài 2 trang 63 Toán 7 Tập 2: Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau:

a) P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2);

b) Q(x) = (x5 - 5)(-2x6 - x3 + 3).

Lời giải:

a) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

P(x) = (-2x2 - 3x + x - 1)(3x2 - x - 2)

= [-2x2 + (-3x + x) - 1].(3x2 - x - 2)

= (-2x2 - 2x - 1)(3x2 - x - 2)

= -2x2.3x2 - (-2x2).x - (-2x2).2 - 2x.3x2 - 2x.(-x) - 2x.(-2) - 1.3x2 - 1.(-x) - 1.(-2)

= -6x4 + 2x3 + 4x2 - 6x3 + 2x2 + 4x - 3x2 + x + 2

= -6x4 + (2x3 - 6x3) + (4x2 + 2x2 - 3x2) + (4x + x) + 2

= -6x4 + (2 – 6)x3 + (4 + 2 – 3)x2 + (4 + 1)x + 2

= -6x4 - 4x3 + 3x2 + 5x + 2

Vậy đa thức P(x) có bậc bằng 4, hệ số cao nhất bằng -6 và hệ số tự do bằng 2.

b) Ta thực hiện nhân và thu gọn rồi sắp xếp đa thức theo số mũ giảm dần của biến:

Q(x) = (x5 - 5)(-2x6 - x3 + 3)

= x5 . (-2x6) - x5 . x3 + x5 . 3 - 5 . (-2x6) - 5 . (-x3) - 5 . 3

= -2x11 - x8 + 3x5 + 10x6 + 5x3 - 15

= -2x11 - x8 + 10x6 + 3x5 + 5x3 - 15

Khi đó đa thức Q(x) có bậc bằng 11, hệ số cao nhất bằng -2 và hệ số tự do bằng -15.

Đánh giá

0

0 đánh giá