Với giải HĐ1 trang 22 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 3: Bất phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn
HĐ1 trang 22 Toán lớp 10: Trong tình huống mở đầu, gọi x là số vé loại 1 bán được và y là số vé loại 2 bán được. Viết biểu thức tính số tiền bán vé thu được (đơn vị nghìn đồng) ở rạp chiếu phim đó theo x và y.
a) Các số nguyên không âm x và y phải thoả mãn điều kiện gì để số tiền bán vé thu được đạt tối thiểu 20 triệu đồng?
b) Nếu số tiền bán vé thu được nhỏ hơn 20 triệu đồng thì x và y thỏa mãn điều kiện gì?
Phương pháp giải:
Bước 1: Biểu diễn số tiền x vé loại 1 và y vé loại 2
Số tiền bán vé=Số vé. Số tiền 1 vé
Bước 2: Số tiền thu được=Số tiền x loại 1+ Số tiền y loại 2
a) Số tiền thu được tối thiểu 20 triệu đồng có nghĩa là số tiền thu được lớn hơn hoặc bằng 20 triệu đồng.
b) Lập bất phương trình về số tiền nhỏ hơn 20 triệu đồng.
Lời giải:
Bước 1:
Số tiền bán x vé loại 1 là: (đồng)
Số tiền bán y vé loại 2 là: (đồng)
Bước 2:
Số tiền thu được là
(đồng)
a)
Ta có 20 triệu = 20 000 000= (đồng)
Số tiền thu được khi bán x vé loại 1 và y vé loại 2 là (đồng)
Nên để số tiền thu được tối thiểu 20 triệu thì ta cần:
Vậy các số nguyên không âm x và y phải thỏa mãn điều kiện
b)
Ta có 20 triệu = 20 000 000= (đồng)
Số tiền thu được khi bán x vé loại 1 và y vé loại 2 là (đồng)
Số tiền thu được nhỏ hơn 20 triệu thì:
Chú ý:
- Số tiền tối thiểu thì ta phải lập bất phương trình với dấu “”.
- Cần đổi 20 triệu đồng thành 20 000 000 đồng tránh lập sai bất phương trình.
Lý thuyết Bất phương trình bậc nhất hai ẩn
- Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là:
Trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số.
- Cặp số được gọi là một nghiệm của bất phương trình bậc nhất hai ẩn nếu bất đẳng thức đúng.
Nhận xét: Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Ví dụ:
có dạng ax + by < c với a = 5, b = 2, c = 4 là bất phương trình bậc nhất hai ẩn.
không là bất phương trình bậc nhất hai ẩn vì có ba ẩn x, y, z.
Nghiệm của bất phương trình 5x + 2y < 4:
Xét cặp số (–1; –2) có 5.(–1) + 2(–2) = –9 < 4 nên cặp số (–1; –2) là nghiệm của bất phương trình.
Xét cặp số (0; 0) có 5.0 + 2.0 = 0 < 4 nên cặp số (0; 0) là nghiệm của bất phương trình.
Xét cặp số (–1;2) có 5.(–1) + 2.2 = –1 < 4 nên cặp số (–1;2) là nghiệm của bất phương trình.
Ta có thể tìm thêm được nhiều cặp số thỏa mãn bất phương trình đã cho. Do đó bất phương trình bậc nhất hai ẩn 5x + 2y < 4 có các cặp nghiệm là (–1; –2); (0; 0); (–1; 2) … hay bất phương trình này có vô số nghiệm.
Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Luyện tập 1 trang 23 Toán lớp 10: Cho bất phương trình bậc nhất hai ẩn ...
Luyện tập 2 trang 24 Toán lớp 10: Biểu diễn miền nghiệm của bất phương trình 2x+y...
Bài 2.1 trang 25 Toán lớp 10: Bất phương trình nào sau đây là bất phương tình bậc nhất hai ẩn?...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 3: Bất phương trình bậc nhất hai ẩn
Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Bài 5: Giá trị lượng giác của một góc từ 0 đến 180