Với giải Bài 1 trang 122 SBT Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 1 trang 122 SBT Toán 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
a) 15; 15; 12; 14; 17; 16; 16; 15; 15.
b) 5; 7; 4; 3; 5; 6; 7; 8; 9; 7; 2.
c) 7; 6; 8; 7; 7; 4; 5; 10; 9; 9; 8; 5.
d) 87; 87; 88; 88; 70; 83; 85; 86; 97; 89; 92; 89; 90.
Lời giải:
a) Ta có: n = 9
Sắp xếp mẫu số liệu theo thứ tự không giảm:
12; 14; 15; 15; 15; 15; 16; 16; 17
+) Số trung bình:
+) Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 15.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 12; 14; 15; 15.
Vậy Q1 = (14 + 15) : 2 = 14,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 15; 16; 16; 17.
Vậy Q3 = (16 + 16) : 2 = 16.
+) Vì số 15 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (4 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 15.
b) Ta có: n = 11
Sắp xếp mẫu số liệu theo thứ tự không giảm:
2; 3; 4; 5; 5; 6; 7; 7; 7; 8; 9
+) Số trung bình:
+) Vì n = 11 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 2; 3; 4; 5; 5.
Vậy Q1 = 4.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 7; 7; 7; 8; 9.
Vậy Q3 = 7.
+) Vì số 7 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (3 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 7.
c) Ta có: n = 12
Sắp xếp mẫu số liệu theo thứ tự không giảm:
4; 5; 5; 6; 7; 7; 7; 8; 8; 9; 9; 10
+) Số trung bình:
+) Vì n = 12 là số chẵn nên ta có tứ phân vị thứ hai Q2 = (7 + 7) : 2 = 7.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 4; 5; 5; 6; 7; 7.
Vậy Q1 = (5 + 6) : 2 = 5,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 7; 8; 8; 9; 9; 10.
Vậy Q3 = (8 + 9) : 2 = 8,5.
+) Vì số 7 là giá trị xuất hiện nhiều nhất trong mẫu số liệu (3 lần). Nên suy ra Mốt của mẫu số liệu là Mo = 7.
d) Ta có: n = 13
Sắp xếp mẫu số liệu theo thứ tự không giảm:
70; 83; 85; 86; 87; 87; 88; 88; 89; 89; 90; 92; 97
+) Số trung bình:
+) Vì n = 13 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 88.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 70; 83; 85; 86; 87; 87.
Vậy Q1 = (85 + 86) : 2 = 85,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 88; 89; 89; 90; 92; 97.
Vậy Q3 = (89 + 90) : 2 = 89,5.
+) Vì số 87, 88, 89 là các giá trị xuất hiện nhiều nhất trong mẫu số liệu (2 lần). Nên suy ra Mốt của mẫu số liệu là Mo ∈ {87; 88; 89}.
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 122 SBT Toán 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:...
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Bài 1: Dấu của tam thức bậc hai