Với giải Bài 8 trang 114 SBT Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 1: Số gần đúng và sai số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 1: Số gần đúng và sai số
Bài 8 trang 114 SBT Toán 10 Tập 1: Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi hình tròn là p = 75,36 cm. Hãy ước lượng sai số tuyệt đối của p, biết 3,141 < π < 3,142.
Lời giải:
Gọi và lần lượt là đường kính và chu vi của hình tròn.
Ta có = 24 ± 0,2 nên suy ra 24 – 0,2 ≤ ≤ 24 + 0,2.
Hay 23,8 ≤ ≤ 24,2.
Mà 3,141 < π < 3,142 nên suy ra:
23,8 . 3,141 ≤ . π ≤ 24,2 . 3,142
⇔ 74,7558 ≤ ≤ 76,0364.
Ta có: p = 75,36 là số gần đúng của nên sai số tuyệt đối của số gần đúng p là ∆p = | − 75,36|.
Mà 74,7558 ≤ ≤ 76,0364
⇔ 74,7558 − 75,36 ≤ − 75,36 ≤ 76,0364 − 75,36
⇔ −0,6042 ≤ − 75,36 ≤ 0,6764
⇒ | − 75,36| ≤ 0,6764.
Vậy sai số tuyệt đối của p là ∆p = | − 75,36| ≤ 0,6764.
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 113 SBT Toán 10 Tập 1: Trong các số sau, số nào là số gần đúng?...
Bài 2 trang 113 SBT Toán 10 Tập 1: Viết số quy tròn của mỗi số sau với độ chính xác d...
Bài 3 trang 113 SBT Toán 10 Tập 1: Cho biết ...
Bài 4 trang 113 SBT Toán 10 Tập 1: Hãy viết số quy tròn của số gần đúng trong những trường hợp sau:...
Bài 6 trang 113 SBT Toán 10 Tập 1: Cho số gần đúng a = 0,1031 với độ chính xác d = 0,002...
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu