Với giải Bài 4.20 trang 58 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 7 Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 4.20 trang 58 SBT Toán 7 Tập 1: Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19).
a) Chứng minh: ∆ABD = ∆DCA; ∆ADC = ∆BCD.
b) Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải hình chữ nhật không.
Hướng dẫn giải
a) Xét ∆ABD và ∆DCA có:
AB = CD (do ABCD là hình bình hành)
AD chung
BD = AC (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ABD = ∆DCA (c – c – c).
Xét ∆ADC và ∆BCD có:
AD = BC (do ABCD là hình bình hành)
DC chung
AC = BD (giả thiết hai đường chéo bằng nhau)
Do đó, ∆ADC = ∆BCD (c – c – c).
b) Do ∆ABD = ∆DCA nên .
Mặt khác vì ABCD là hình bình hành nên AB // CD, do đó (hai góc trong cùng phía).
Do vậy .
Hình bình hành ABCD có một góc vuông nên ta suy ra các góc còn lại cũng là góc vuông. Vậy ABCD là hình chữ nhật.
Xem thêm các bài giải SBT Toán 7 Kết nối tri thức hay, chi tiết khác:
Bài 4.15 trang 57 SBT Toán 7 Tập 1: Cho Hình 4.14, chứng minh rằng ∆ABC = ∆ADC; ∆MNP = ∆MQP...
Bài 4.16 trang 57 SBT Toán 7 Tập 1: Cho Hình 4.15, chứng minh rằng ∆ABC = ∆DCB; ∆ADB = ∆DAC...
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 12: Tổng các góc trong một tam giác
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng