Với lời giải SBT Toán 10 trang 108 Tập 1 chi tiết trong Bài ôn tập chương 4 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài ôn tập chương 4
Bài 79 trang 108 SBT Toán 10 Tập 1: a) Chứng minh đẳng thức với và là hai vectơ bất kì.
b) Cho . Tính và .
Lời giải:
a)
b) Áp dụng công thức trên ta được:
Mặt khác ta lại có:
Vậy và .
Bài 80 trang 108 SBT Toán 10 Tập 1: Cho tam giác ABC, có ba trung tuyến AD, BE, CF. Chứng minh rằng: .
Lời giải:
Ta có:
=
=
=
= 0
Bài 81 trang 108 SBT Toán 10 Tập 1: Cho tứ giác ABCD, M là điểm thay đổi trong mặt phẳng thỏa mãn . Chứng minh M luôn nằm trên đường tròn cố định.
Lời giải:
Gọi I và J lần lượt là trung điểm của AB và CD.
Khi đó ta có: và
⇒
⇔
⇔
⇔
⇔
Vậy M là điểm thuộc đường tròn đường kính IJ.
Bài 82 trang 108 SBT Toán 10 Tập 1: Cho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức đạt giá trị nhỏ nhất.
Lời giải:
Xét biểu thức
⇒
Do đó để biểu thức đạt giá trị nhỏ nhất thì đạt giá trị nhỏ nhất khi MG nhỏ nhất và MG nhỏ nhất khi M là hình chiếu vuông góc của G lên đường thẳng d.
Vậy để đạt giá trị nhỏ nhất thì điểm M là hình chiếu vuông góc của G trên đường thẳng d.
Xem thêm các bài giải sách bài tập Toán 10 Cánh diều hay, chi tiết khác:
Giải SBT Toán 10 trang 106 Tập 1
Giải SBT Toán 10 trang 107 Tập 1
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 6: Tích vô hướng của hai vectơ
Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây