Sách bài tập Toán 10 Bài 2 (Chân trời sáng tạo): Tổng và hiệu của hai vectơ

3.4 K

Với giải sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ

Giải SBT Toán 10 trang 94 Tập 1

Bài 1 trang 94 SBT Toán 10 Tập 1Cho hình thoi ABCD và M là trung điểm cạnh AB, N là trung điểm cạnh CD. Chứng minh rằng:  Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Lời giải:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Gọi O là tâm hình thoi. O là trung điểm của AC và BD ( tính chất hình thoi).

 Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1) và Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Vậy Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Bài 2 trang 94 SBT Toán 10 Tập 1: Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Ý b

Lời giải:

a) Theo quy tắc ba điểm cộng vectơ ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Như vậy:  Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

b) Ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Bài 3 trang 94 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ AB+BC và ABBC.

Lời giải:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Theo quy tắc ba điểm, ta có: AB+BC = AC

Tam giác ABC đều cạnh bằng a nên AC = a.

Do đó AB+BC AC = a.

Gọi M là trung điểm cạnh AC.

Ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Vì MB là đường trung tuyến của tam giác đều ABC cạnh bằng a nên MB = a32.

Do đó Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Vậy Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1) và Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1).

Bài 4 trang 94 SBT Toán 10 Tập 1: Cho hình bình hành ABCD tâm O. Chứng minh rằng:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Ý b

Ý c

Ý d

Lời giải:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Vì ABCD là hình bình hành nên O là trung điểm của AC, BD.

Do đó

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

b) Vì ABCD là hình bình hành nên: BC​AD​

Ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

c) Ta có: 

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1) và Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Mà ta lại có ABCD là hình bình hành nên BA CD.

Vậy nên DADB=ODOC.

d) Theo chứng minh trên ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Bài 5 trang 94 SBT Toán 10 Tập 1: Cho ba lực F1=MAF2=MB và F3=MC cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết độ lớn của F1F2 đều là 100N và AMB^ = 60°. Tính độ lớn của lực F3.

Lời giải:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

M đứng yên nên:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

 F3 có hướng ngược với MD​ và có độ lớn bằng MD​.

Dựng hình bình hành MADB.

Gọi I là giao điểm của AB và MD. Khi đó I là trung điểm của AB và MD.

Mặt khác AMB^ = 60° nên tam giác AMB đều.

Khi đó MI  AB  Tam giác AIM vuông tại I.

 MI = AM.sinMAI^= 100.sin60° = 503  MD = 2MI = 1003.

Vậy độ lớn của lực F3 bằng 1003.

Bài 6 trang 94 SBT Toán 10 Tập 1: Khi máy bay nghiêng cánh một góc α, lực F của không khí tác động vuông góc với cánh và bằng tổng của lực nâng F1 và lực cản F2 ( Hình 8). Cho biết α = 45° và F = a. Tính F1 và F2 theo a.

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đặt tên các điểm trong hình vẽ, ta có:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Khi đó F=OB,F1=OA,F2=OC

Vì lực  vuông góc với phương xy của cánh nên FOx^=90°.

Ta có: COx^=α=45°

 BOC^=BOx^COx^=90°45°=45°

Xét tam giác BOC vuông tại C, có:

cosBOC^=OCOB  Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

cosBOC^=OCOB  Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Vậy F2=F1=a32.

Bài 7 trang 94 SBT Toán 10 Tập 1: Cho hình vuông ABCD có tâm O và có cạnh bằng a. Cho hai điểm M, N thỏa mãn: MA+MD=0 ; NB+ND+NC=0.

Tìm độ dài các vectơ MANO.

Lời giải:

Sách bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Ta có: MA+MD=0 suy ra M là trung điểm AD. Khi đó MA= MA = 12AD = a2.

Và NB+ND+NC=0 suy ra N là trọng tâm tam giác BCD. Khi đó NO NO = 13CO = 16CA.

Xét hình vuông ABCD, có: CA = =AB2+AC2=a2+a2 = a2

Suy ra NO=16CA=16.a2=a26.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Khái niệm vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Lý thuyết Tổng và hiệu của hai vectơ

1. Tổng của hai vectơ

Cho hai vectơ a và b. Từ một điểm A tùy ý, lấy hai điểm B, C sao cho AB=a,  BC=b. Khi đó AC được gọi là tổng của hai vectơ a và b và được kí hiệu là a+b.

Vậy a+b=AB+BC=AC.

Phép toán tìm tổng của hai vectơ được gọi là phép cộng vectơ.

Quy tắc ba điểm

Với ba điểm M, N, P, ta có MN+NP=MP.

Chú ý: Khi cộng vectơ theo quy tắc ba điểm, điểm cuối của vectơ thứ nhất phải là điểm đầu của vectơ thứ hai.

Ví dụ: Cho các điểm A, B, C, D, E, F phân biệt. Thực hiện phép cộng các vectơ:

AC+CD;  BC+CB;  DC+CE+EF.

Hướng dẫn giải

Áp dụng quy tắc ba điểm, ta có:

AC+CD=AD.

BC+CB=BB=0.

DC+CE+EF=DE+EF=DF.

Quy tắc hình bình hành

Nếu OACB là hình bình hành thì ta có OA+OB=OC.

Ví dụ: Cho hình chữ nhật MNPQ và hai vectơ x,  y như hình bên. Tính tổng của hai vectơ x và y.

Hướng dẫn giải

Ta có x=AD,  y=AB.

Suy ra x+y=AD+AB.

Theo quy tắc hình bình hành, ta có AD+AB=AC.

Vậy x+y=AC.

2. Tính chất của phép cộng các vectơ

Phép cộng vectơ có các tính chất sau:

+ Tính chất giao hoán: a+b=b+a.

+ Tính chất kết hợp: a+b+c=a+b+c.

+ Với mọi a, ta luôn có: a+0=0+a=a.

Chú ý: Từ tính chất kết hợp, ta có thể xác định được tổng của ba vectơ a,  b,  c ,kí hiệu là a+b+c với a+b+c=a+b+c.

Ví dụ: Cho tứ giác MNPQ. Thực hiện các phép cộng vectơ sau:

a) MN+PM+NQ.

b) MN+QP+NQ+PM.

Hướng dẫn giải

Áp dụng tính chất giao hoán và tính chất kết hợp của phép cộng vectơ, ta được:

a) MN+PM+NQ=PM+MN+NQ=PN+NQ=PQ.

b) MN+QP+NQ+PM=MN+NQ+QP+PM=MQ+QM=MM=0.

Chú ý: Cho vectơ tùy ý a=AB.

Ta có a+a=AB+AB=AB+BA=AA=0.

Tổng hai vectơ đối nhau luôn bằng vectơ-không: a+a=0.

3. Hiệu của hai vectơ

Cho hai vectơ a và b. Hiệu của hai vectơ a và b là vectơ \a+b và kí hiệu là ab.

Phép toán tìm hiệu của hai vectơ được gọi là phép trừ vectơ.

Ví dụ: Cho các điểm D, E, F, G phân biệt. Thực hiện các phép trừ vectơ sau: DEFE;  GDGF.

Hướng dẫn giải

Ta có: DEFE=DE+FE=DE+EF=DF.

GDGF=GD+GF=GD+FG=FG+GD=FD.

Chú ý: Cho ba điểm O, A, B, ta có:OBOA=AB.

Ví dụ: Cho hình vuông ABCD và một điểm M tùy ý. Thực hiện các phép trừ vectơ sau: OBOD;  OCOA+DBDC.

Hướng dẫn giải

Ta có OBOD=DB.

OCOA+DBDC=AC+CB=AB.

4. Tính chất vectơ của trung điểm đoạn thẳng và trọng tâm tam giác

Điểm M là trung điểm của đoạn thẳng AB khi và chỉ khi MA+MB=0.

Điểm G là trọng tâm của tam giác ABC khi và chỉ khi GA+GB+GC=0.

Ví dụ: Cho hình bình hành ABCD có tâm O. Hai điểm E, F lần lượt là trung điểm AB, BC. Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng:

a) OA+OC+OD+OE+OF=0.

b) GA+GC+GD=BD.

Hướng dẫn giải

a) Vì ABCD là hình bình hành tâm O nên O là trung điểm AC (tính chất hình bình hành).

Lại có E là trung điểm AB (gt)

Do đó OE là đường trung bình của tam giác ABC.

Suy ra OE // BC và OE = 12BC = BF (với F là trung điểm BC).

Khi đó ta có tứ giác OEBF là hình bình hành.

Áp dụng quy tắc hình bình hành cho OEBF, ta được: OE+OF=OB.

Vì ABCD là hình bình hành tâm O nên O là trung điểm AC và BD (tính chất hình bình hành).

Do đó OA+OC=0 và OD+OB=0.

Ta có OA+OC+OD+OE+OF

=OA+OC+OD+OE+OF

=0+OD+OB=0+0=0.

Vậy OA+OC+OD+OE+OF=0.

b) Vì G là trọng tâm của tam giác ABC nên GA+GB+GC=0.

Theo quy tắc ba điểm, ta có: GD=GB+BD=GB+BC+CD.

Ta có GA+GC+GD

=GA+GC+GB+BC+CD

=GA+GC+GB+BC+CD 

=0+BD=BD.

Vậy GA+GC+GD=BD.

Đánh giá

0

0 đánh giá