Với giải ý c Bài 13 trang 47 SBT Toán lớp 10 Cánh diều chi tiết trong Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 13 trang 47 SBT Toán 10 Tập 1: Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:
c) Có trục đối xứng là x = – 1 và tung độ của đỉnh bằng 5.
Lời giải
Xét parabol y = ax2 – bx + 1 với a ≠ 0:
c) Parabol có trục đối xứng là x = – 1 ⇔ ⇔ b = – 2a (5)
Thay x = – 1 và y = 5 vào parabol y = ax2 – bx + 1, ta được:
5 = a.(– 1)2 – b.(– 1) + 1 ⇔ a + b = 4 (6).
Từ (5) và (6) ta có hệ phương trình:
(thỏa mãn điều kiện).
Vậy parabol cần tìm là: y = – 4x2 – 8x + 1.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 9 trang 47 SBT Toán 10 Tập 1: Trong các hàm số sau, hàm số nào không là hàm số bậc hai?...
Bài 10 trang 47 SBT Toán 10 Tập 1: Cho hàm số f(x) = 2x2 + 8x + 8. Phát biểu nào sau đây là đúng?...
Bài 13 trang 47 SBT Toán 10 Tập 1: Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:...
Bài 14 trang 47 SBT Toán 10 Tập 1: Vẽ đồ thị của mỗi hàm số sau:...
Bài 16 trang 48 SBT Toán 10 Tập 1: Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:...
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc nhất một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai