Với giải sách bài tập Toán 10 Bài 1: Hàm số và đồ thị sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 1: Hàm số và đồ thị
Giải SBT Toán 10 trang 42 Tập 1
A. x + 2y = 3.
B. y = .
C. y = .
D. x2 + y2 = 4.
Lời giải
Đáp án đúng là D
Xét công thức x + 2y = 3 ⇔ y = x + 3;
Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức y =
Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức y =
Với mỗi giá trị x ≠ 0 ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức: x2 + y2 = 4 ⇔ y2 = – x2 + 4 ⇔ y = .
Ta thấy ở công thức này, với mỗi giá trị của x thỏa mãn điều kiện – x2 + 4 ≥ 0 ta xác định được 2 giá trị của y. Do đó công thức này không biểu diễn y là hàm số của x.
A. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1.
B. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 1.
C. Hàm số đồng biến trên khoảng (– 1; +∞), nghịch biến trên khoảng ( – ∞; – 1).
D. Hàm số đồng biến trên ℝ.
Lời giải
Đáp án đúng là D
Quan sát đồ thị ta thấy:
Hàm số xác định trên ℝ, và trên ℝ hàm số đi lên nên hàm đồng biến trên ℝ. Do đó C sai và D đúng.
Đồ thị hàm số cắt Ox tại điểm có hoành độ bằng – 1. Do đó A sai.
Đồ thị hàm số cắt Oy tại điểm có tung độ bằng 1. Do đó B sai.
Bài 3 trang 42 SBT Toán 10 Tập 1: Tìm tập xác định của mỗi hàm số sau:
a) y = – x3 + 4x – 1;
Lời giải
a) Biểu thức – x3 + 4x – 1 xác định với mọi giá trị của x ∈ ℝ.
Do đó tập xác định của hàm số y = – x3 + 4x – 1 là D = ℝ.
Vậy D = ℝ.
b) Biểu thức xác định khi 5 – 6x ≥ 0 ⇔ x ≤ .
Do đó tập xác định của hàm số y = là D = .
Vậy D = .
c) Biểu thức xác định khi 3x + 1 ≠ 0 ⇔ x ≠ .
Do đó tập xác định của hàm số y = là D = ℝ \ .
Vậy D = ℝ \ .
d) Biểu thức xác định khi 2x – 1 ≠ 0 ⇔ x ≠ và biểu thức xác định khi 3 – x ≥ 0 ⇔ x ≤ 3.
Do đó tập xác định của hàm số y = là D = ( –∞; 3) \ .
Vậy D = ( –∞; 3) \ .
e) Biểu thức xác định khi x2 + 3x – 4 ≠ 0 ⇔ x ≠ 1 và x ≠ – 4.
Do đó tập xác định của hàm số y = là D = ℝ \{1; – 4}.
Vậy D = ℝ \{1; – 4}.
f) Biểu thức x – 1 luôn xác định với x > 0 và biểu thức 5x + 1 luôn xác định với x < – 1. Do đó tập xác định của hàm số y = là D = (– ∞; – 1) ∪ (0; + ∞).
Vậy D = (– ∞; – 1) ∪ (0; + ∞).
Bài 4 trang 42 SBT Toán 10 Tập 1: Cho hàm số: f(x) = .
a) Tìm tập xác định của hàm số trên.
b) Tính giá trị của hàm số khi x = – 2; x = 0; x = 2 021.
Lời giải
a) Biểu thức – x + 1 luôn xác định với x < 0, biểu thức 0 luôn xác định với x = 0 và biểu thức 1 luôn xác định với x > 0.
Do đó tập xác định của hàm số f(x) là D = ℝ.
Vậy D = ℝ.
b) Với x = – 2 < 0 thì f(x) = – x + 1. Khi đó thay x = 2 vào hàm số ta được: f(– 2) = – (– 2) + 1 = 3.
Với x = 0 thì f(x) = 0. Khi đó thay x = 0 vào hàm số ta được: f(0) = 0.
Với x = 2 021 > 1 thì f(x) = 1. Khi đó thay x = 2 021 vào hàm số ta được: f(2 021) = 1.
Vậy giá trị của hàm số tại x = – 2; x = 0; x = 2 021 lần lượt là f(– 2) = 3; f(0) = 0 và f(2 021) = 1.
Giải SBT Toán 10 trang 43 Tập 1
Bài 5 trang 43 SBT Toán 10 Tập 1: Quan sát đồ thị hàm số y = f(x) ở Hình 5.
a) Trong các điểm có tọa độ (1 ; 2), (0 ; 0), (2 ; 3), điểm nào thuộc đồ thị hàm số, điểm nào không thuộc đồ thị hàm số?
c) Tìm điểm thuộc đồ thị hàm số có tung độ bằng 1.
Lời giải
a) +) Với điểm có tọa độ (1 ; 2) thì x = 1, y = 2.
Từ điểm x = 1 trên trục hoành ta dõng một đường thẳng đứng cắt đồ thị tại điểm có tung độ y = 2.
Do đó điểm có tọa độ (1 ; 2) thuộc vào đồ thị hàm số.
+) Với điểm có tọa độ (0 ; 0) thì x = 0, y = 0.
Từ điểm x = 0 trên trục hoành ta dõng một đường thẳng đứng cắt đồ thị tại điểm có tung độ y = 1 ≠ 0.
Do đó điểm có tọa độ (0 ; 0) không thuộc vào đồ thị hàm số.
+) Với điểm có tọa độ (2 ; 3) thì x = 2, y = 3.
Từ điểm x = 2 trên trục hoành ta dõng một đường thẳng đứng cắt đồ thị tại điểm có tung độ y = 3.
Do đó điểm có tọa độ (2 ; 3) thuộc vào đồ thị hàm số.
b) Giá trị f(0) là giá trị của hàm số tại điểm có hoành độ x = 0 hay chính là tung độ của điểm thuộc vào đồ thị có hoành độ bằng 0.
bằng 1. Do đó f(0) = 1.
Giá trị f(3) là giá trị của hàm số tại điểm có hoành độ x = 3 hay chính là tung độ của điểm thuộc vào đồ thị có hoành độ bằng 0.
Tại điểm x = 3 trên trục hoành dõng đường thẳng đứng cắt đồ thị tại điểm có tung độ bằng 4. Do đó f(3) = 4.
Vậy f(0) = 1 và f(3) = 4.
c) Gọi điểm thuộc đồ thị hàm số có tung độ bằng 1 là (a; 1).
Quan sát trên đồ thị hàm số ta thấy các điểm như trên thỏa mãn a ∈ [– 3; 0] thì tung độ đều bằng 1.
Vậy điểm điểm thuộc đồ thị hàm số có tọa độ (a; 1) với a ∈ [– 3; 0].
Bài 6 trang 43 SBT Toán 10 Tập 1: Cho bảng biến thiên hàm số y = f(x) như sau:
a) Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y = f(x).
b) So sánh f(– 2021) và f(– 1); f() và f(2).
Lời giải
a) Dựa vào bảng biến thiên, ta thấy:
Hàm số đi lên trên khoảng (1; 3). Do đó hàm số đồng biến trên khoảng (1; 3).
Hàm số đi xuống trên khoảng (– ∞; 1) và (3; +∞). Do đó hàm số nghịch biến trên khoảng (– ∞; 1) và (3; +∞).
Vậy hàm số đồng biến trên khoảng (1; 3) và nghịch biến trên khoảng (– ∞; 1) và (3; +∞).
b) Ta có – 2021; – 1 ∈ (– ∞; 1) và – 2021 < – 1
Mà trên khoảng (– ∞; 1) hàm số nghịch biến nên f(– 2021) > f(– 1).
Ta có ; 2 ∈ (1; 3) và < 2
Mà trên khoảng (1; 3) hàm số đồng biến nên f() < f(2)
Vậy f(– 2021) > f(– 1) và f() < f(2).
Lời giải
Đặt y = f(x) = .
Tập xác định của hàm số D = ℝ \ {0}.
Lấy x1, x2 ∈ (–∞; 0) thỏa mãn x1 < x2 < 0
Vì x1 < x2 nên ⇒ hay f(x1) < f(x2).
Do đó hàm số đồng biến trên khoảng (–∞; 0).
Lấy x1, x2 ∈ (0; +∞) thỏa mãn 0 < x1 < x2
Vì x1 < x2 nên ⇒ hay f(x1) < f(x2).
Do đó hàm số đồng biến trên khoảng (0; +∞).
Vậy hàm số đồng biến trên khoảng (–∞; 0) và (0; +∞).
a) Hãy biểu diễn thu nhập hàng tháng của nhân viên đó bằng một hàm số theo doanh số bán hàng.
Lời giải
a) Gọi doanh số bán hàng hàng tháng của nhân viên đó là x (triệu đồng) (x > 0) và thu nhập hàng tháng của nhân viên đó là y (triệu đồng) (y > 0).
Ta có:
Nếu 0 < x ≤ 10 thì y = 5;
Nếu 10 < x < 20 thì y = 5 + 5%.x = 5 + 0,05x;
Nếu x ≥ 20 thì y = 5 + 5%.x + 0,5 = 5,5 + 0,05x.
Khi đó hàm số biểu diễn thu nhập hàng tháng của nhân viên đó theo doanh số bán hàng là .
Vậy hàm số cần tìm là .
b) Nếu x = 30 > 20 thì y = 5,5 + 0,05.30 = 7 triệu đồng.
Vậy nếu doanh số trong 1 tháng của nhân viên đó là 30 triệu đồng thì nhân viên đó sẽ nhận được số tiền lương là 7 triệu đồng.
Bài giảng Toán 10 Bài 1: Hàm số và đồ thị - Cánh diều
Xem thêm các bài giải SBT Toán 10 Cánh diều hay, chi tiết khác:
Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc nhất một ẩn
Lý thuyết Hàm số và đồ thị
1. Hàm số
1.1. Định nghĩa
Cho tập hợp khác rỗng D ⊂ ℝ. Nếu với mỗi giá trị của x thuộc D có một và chỉ một giá trị tương ứng của y thuộc tập hợp số thực ℝ thì ta có một hàm số.
Ta gọi x là biến số và y là hàm số của x.
Tập D được gọi là tập xác định của hàm số.
Kí hiệu hàm số: y = f(x), x ∈ D.
Ví dụ:
a) Với hình tròn có bán kính r và đường kính d, ta có d = r. Như vậy d là hàm số của r vì mỗi giá trị của r chỉ cho đúng một giá trị của d.
b) Biểu thức y2 = x, như vậy ta thấy y không phải là hàm số của x vì khi x = 1 ta có hai giá trị của y là 1 và – 1.
1.2. Cách cho hàm số
a) Hàm số cho bằng một công thức
Hàm số được cho bằng biểu thức, cùng cách nói với hàm số cho bằng công thức.
Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.
Ví dụ:
a) Tìm tập xác định của hàm số y = .
Biểu thức có nghĩa khi x – 20 ⇔ x ≠ 2, vì vậy tập xác định của hàm số đã cho là: .
b) Tìm tập xác định của hàm số y =
Biểu thức có nghĩa khi x – 2 ≥ 0 ⇔ x ≥ 2, vì vậy tập xác định của hàm số đã cho là:.
b) Hàm số cho bằng nhiều công thức
Một hàm số có thể được cho bằng nhiều công thức.
Ví dụ:
Cho hàm số: f(x) =
a) Tìm tập xác định của hàm số trên?
b) Tính giá trị của hàm số khi x = – 5; x = 0; x = 2022.
Hướng dẫn giải:
a) Hàm số f(x) có nghĩa khi x < 0; x > 0; x = 0 nên tập xác định của hàm số là: D = ℝ
b) Với x = –5 < 0 thì f(–5) = –1;
Với x = 0 thì f(0) = 0;
Với x = 2022 > 1 thì f(2022) = 1.
Vậy giá trị của hàm số tại x = –5; x = 0; x = 2022 lần lượt là f(–5) = –1; f(0) = 0; f(2022) = 1.
Chú ý: Giả sử hàm số y = f(x) có tập xác định là D. Khi biến số x thay đổi trong tập D thì tập hợp các giá trị y tương ứng được gọi là tập giá trị của hàm số.
c) Hàm số không cho bằng công thức
Trong thực tiễn, có những tình huống dẫn tới những hàm số không thể cho bằng không thức (hoặc nhiều công thức).
Ví dụ: Biểu đồ lượng mưa tại Hà Nội trong năm 2021 (Đơn vị: mm)
a) Xác định tập hợp các tháng được nêu trong biểu đồ.
b) Tương ứng tháng với lượng mưa trung bình của tháng đó có phải là hàm số không? Giải thích.
Giải:
a) Tập hợp các tháng là: D = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}
b) Mỗi tháng tương ứng xác định với đúng một giá trị của lượng mưa nên tương ứng đó xác định một hàm số. Hàm số đó có thể được cho bằng bảng như sau:
Đồ thị của hàm số y = f(x) xác định trên tập hợp D là tập hợp tất cả các điểm
M(x; f(x)) trong mặt phẳng toạ độ Oxy với mọi x thuộc D.
Ví dụ: Cho hàm số y = x + 3.
a) Vẽ đồ thị hàm số trên.
b) Trong mặt phẳng toạ độ Oxy cho ba điểm: A(0; 3); B(1;2); C(1; 1). Xác định điểm thuộc và không thuộc đồ thị trên.
Giải:
a) Khi x = 0 thay vào hàm số y = x + 3 ta được y = 3 như vậy đồ thị cắt trục Oy tại điểm (0;3).
Khi y = 0 thay vào hàm số y = x + 3 ta được x = –3 như vậy đồ thị cắt trục Ox tại điểm (–3; 0). Ta vẽ được đồ thị đi qua hai điểm trên.
Đồ thị hàm số y = x + 3
b) Khi x = 0 thì y = 3; khi x = 1 thì y = 4. Vậy điểm điểm A(0; 3) thuộc đồ thị hàm số, điểm B(1; 2); C(1; 1) không thuộc đồ thị.
Chú ý:
– Điểm M(a; b) trong mặt phẳng toạ độ Oxy thuộc đồ thị hàm số y = f(x), x ∈ D khi và chỉ khi .
– Để chứng tỏ điểm M(a; b) trong mặt phẳng toạ độ không thuộc đồ thị hàm số
y = f(x), x ∈ D, ta có thể kiểm tra một trong hai khả năng sau:
Khả năng 1: Chứng tỏ rằng a ∉ D
Khả năng 2: Khi a ∈ D thì chứng tỏ rằng b ≠ f(a).
3. Sự biến của hàm số
Cho hàm số y = f(x) xác định trên khoảng (a; b):
– Hàm số y = f(x) gọi là đồng biến trên khoảng (a; b) nếu
– Hàm số y = f(x) gọi là nghịch biến trên khoảng (a; b) nếu
Ví dụ: Cho hàm số y = f(x) = x2
Xét sự biến thiên của hàm số trên khoảng (–∞; 0) và (0; +∞).
Hướng dẫn giải
+) Trên khoảng (–∞; 0) hàm số luôn xác định
Lấy x1, x2 ∈ (–∞; 0) thỏa mãn x1 < x2.
Vì x1 < x2 < 0 nên x12 > x22 hay f(x1) > f(x2)
Do đó hàm số nghịch biến trên (–∞; 0).
+) Trên khoảng (0; +∞) hàm số luôn xác định
Lấy x1, x2 ∈ (0; +∞) thỏa mãn x1 < x2.
Vì 0 < x1 < x2 nên x12 < x22 hay f(x1) < f(x2)
Do đó hàm số đồng biến trên (0; +∞).
Vậy hàm số đã cho nghịch biến trên (–∞; 0) và đồng biến trên (0; +∞).
Bảng biến thiên:
Đây là bảng thiên của hàm số y = x2.
– Dấu mũi tên đi lên từ 0 đến +∞ diễn ta hàm số đồng biến trên khoảng (0; +∞).
Đồ thị hàm số:
– Ta thấy hàm số nghịch biến trên khoảng (–∞; 0) khi đồ thị hàm số trên khoảng đó “đi xuống”.
– Hàm số đồng biến trên khoảng (0; +∞) khi đồ thị hàm số trên khoảng đó “đi lên”.