Với giải Bài 4.36 trang 66 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 11: Tích vô hướng của hai vectơ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ
Bài 4.36 trang 66 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.
b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
Lời giải:
a) Vì C cách đều A và B nên CA = CB
Û AC2 = BC2
Giả sử C(x; 0) là điểm thuộc trục hoành
Với A(1; 1); B(7; 5) và C(x; 0) ta có:
• Þ AC2 = (x – 1)2 + (–1)2
Þ AC2 = x2 – 2x + 2
• Þ BC2 = (x – 7)2 + (–5)2
Þ BC2 = x2 – 14x + 74
Do đó AC2 = BC2
Û x2 – 2x + 2 = x2 – 14x + 74
Û 12x = 72
Û x = 6
Vậy C(6; 0).
b) Gọi M là trung điểm của AB.
Khi đó
Do đó để vectơ có độ dài ngắn nhất thì vectơ có độ dài ngắn nhất
Û DM có độ dài ngắn nhất
Hay DM2 nhỏ nhất.
Giả sử D(0; y) là điểm thuộc trục tung
Với A(1; 1); B(7; 5) và D(0; y) ta có:
• M là trung điểm của AB nên
Þ M(4; 3)
Þ DM2 = 42 + (3 – y)2
Hay DM2 = (y – 3)2 + 16
Vì (y – 3)2 ≥ 0 với mọi y
Nên (y – 3)2 + 16 ≥ 16 với mọi y
Hay DM2 ≥ 16 với mọi y
Dấu “=” xảy ra khi và chỉ khi y – 3 = 0 Û y = 3.
Do đó DM đạt giá trị nhỏ nhất khi D(0; 3)
Vậy D(0; 3) thì vectơ có độ dài ngắn nhất.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 4.29 trang 65 SBT Toán 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1...
Bài 4.30 trang 65 SBT Toán 10 Tập 1: Cho hình chữ nhật ABCD có AB = 1, Gọi M là trung điểm của AD...
Bài 4.32 trang 65 SBT Toán 10 Tập 1: Cho hai vectơ và thoả mãn và ..
Bài 4.34 trang 65 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3)...
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài 13: Các số đặc trưng đo xu thế trung tâm