Với giải Bài 4.30 trang 65 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 11: Tích vô hướng của hai vectơ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ
Bài 4.30 trang 65 SBT Toán 10 Tập 1: Cho hình chữ nhật ABCD có AB = 1, Gọi M là trung điểm của AD.
a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.
b) Gọi H là giao điểm của AC, BM. Gọi N là trung điểm của AH và P là trung điểm của CD. Chứng minh rằng tam giác NBP là một tam giác vuông.
Lời giải:
a) Đặt khi đó và
Vì AB ⊥ AD nên
ABCD là hình chữ nhật nên cũng là hình bình hành nên ta có:
(quy tắc hình bình hành)
M là trung điểm của AD nên
Suy ra
Khi đó
Do đó
Þ AC ⊥ BM.
b) • Xét tam giác ABC vuông tại C, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = 1 + = 3
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = AH.AC
Khi đó và
Ta có (quy tắc ba điiểm)
Vì N là trung điểm của AH nên
• Có N là trung điểm của HA và P là trung điểm của CD, theo kết quả bài 4.12, trang 58, Sách giáo khoa Toán 10, tập một, ta có:
Khi đó
Do đó
Þ NB ⊥ NP.
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 4.29 trang 65 SBT Toán 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1...
Bài 4.32 trang 65 SBT Toán 10 Tập 1: Cho hai vectơ và thoả mãn và ..
Bài 4.34 trang 65 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3)...
Bài 4.36 trang 66 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5)...
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài 13: Các số đặc trưng đo xu thế trung tâm