Với giải Bài 9.5 trang 71 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 27: Góc nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 27: Góc nội tiếp
Bài 9.5 trang 71 Toán 9 Tập 2: Cho đường tròn (O), đường kính AB và điểm S nằm ngoài (O). Cho hai đường thẳng SA, SB lần lượt cắt (O) tại M (khác A) và N (khác B). Gọi P là giao điểm của BM và AN (H.9.10). Chứng minh rằng SP vuông góc với AB.
Lời giải:
Xét đường tròn (O) có: và đều là góc nội tiếp cùng chắn nửa đường tròn nên và
Suy ra BM ⊥ AM và AN ⊥ BN
Hay BM ⊥ AS và AN ⊥ BS.
Xét ∆ABS có AN, BM là hai đường cao (BM ⊥ AS và AN ⊥ BS) cắt nhau tại P nên P là trực tâm của ∆ABS, suy ra SP ⊥ AB.
Vậy SP ⊥ AB.
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Bài 9.1 trang 70 Toán 9 Tập 2: Những khẳng định nào sau đây là đúng?...
Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác