Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng

123

Với giải Bài 6.51 trang 31 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 6 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài tập cuối chương 6

Bài 6.51 trang 31 Toán 9 Tập 2: Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Lời giải:

Gọi x là lãi suất năm của hình thức gửi tiết kiệm này (x viết dưới dạng số thập phân, x > 0).

Sau một năm, bác Hương nhận được số tiền cả vốn lẫn lãi là:

100 + 100x (triệu đồng).

Bác Hương gửi thêm 50 triệu đồng nên năm thứ hai bác gửi số tiền là:

100 + 100x + 50 = 150 + 100x (triệu đồng).

Đến cuối năm thứ hai bác Hương nhận được số tiền lãi là:

(150 + 100x).x (triệu đồng).

Sau hai năm (kể từ khi gửi lần đầu), số tiền bác Hương nhận được cả vốn lẫn lãi là:

150 + 100x + (150 + 100x).x = 150 + 250x + 100x2 (triệu đồng).

Theo bài, sau hai năm bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:

150 + 250x + 100x2 = 176

100x2 + 250x – 26 = 0

50x2 + 125x – 13 = 0.

Ta có ∆ = 1252 – 4.50.(–13) = 18 225 > 0 và Δ=18225=135.

Suy ra, phương trình trên có hai nghiệm phân biệt:

x1=125+135250=0,1 (thỏa mãn); x2=125135250=2,6 (loại).

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 0,1 = 10%.

Đánh giá

0

0 đánh giá