Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau: x^2 – 12x + 8 = 0

317

Với giải Bài 6.23 trang 24 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 20: Định lí Viète và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng

Bài 6.23 trang 24 Toán 9 Tập 2: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:

а) x2 – 12x + 8 = 0;

b) 2x2 + 11x – 5 =0;

c) 3x2 – 10 = 0;

d) x2 – x + 3 = 0.

Lời giải:

a) x2 – 12x + 8 = 0.

Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1 + x2 = 12; x1x2 = 8.

b) 2x2 + 11x – 5 =0.

Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=112;x1x2=52.

c) 3x2 – 10 = 0.

Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=03=0; x1x2=103.

d) x2 – x + 3 = 0.

Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.

Đánh giá

0

0 đánh giá