Cho hình chóp tam giác đều có đáy là tam giác đều cạnh a (cm) và chiều cao 10 cm

253

Với giải Bài 6.18 trang 20 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung trang 18 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 18

Bài 6.18 trang 20 Toán 9 Tập 2: Cho hình chóp tam giác đều có đáy là tam giác đều cạnh a (cm) và chiều cao 10 cm.

a) Tính diện tích đáy S của hình chóp theo a.

b) Từ kết quả ở câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi a = 4 cm.

c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Lời giải:

a) Xét ∆ABC đều cạnh a, kẻ AH ⊥ BC.

Bài 6.18 trang 20 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Do ∆ABC đều nên đường cao AH đồng thời là đường trung tuyến của tam giác, nên H là trung điểm của BC. Suy ra BH = 12BC = a2 (cm).

Xét ∆ABH vuông tại H, theo định lí Pythagore, ta có:

AB2 = AH2 + BH2

Suy ra AH2=AB2BH2=a2a22=3a24.

Do đó AH=a32(cm).

Khi đó, diện tích của tam giác ABC là:

S=12AHBC=12a32a=a234(cm2).

Vậy diện tích đáy của hình chóp tam giác đều cạnh a là S=a234(cm2).

b) Thể tích của hình chóp là:

V=13Sh=13a23410=5a236 (cm3).

Khi a = 4, thay vào V=5a236, ta được:

V=54236=4033(cm3).

c) Nếu độ dài cạnh đáy giảm đi 2 lần thì độ dài cạnh đáy của hình chóp lúc này là a2(cm).

Diện tích đáy của hình chóp là: S'=a2234=a2316(cm2).

Thể tích của hình chóp lúc này là:

V'=13S'h=13a231610=5a2324=V4(cm3).

Vậy độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 6 lần.

Đánh giá

0

0 đánh giá