Với giải Bài 10 trang 23 Chuyên đề Toán 12 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 1 trang 21 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:
Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 1 trang 21
Bài 10 trang 23 Chuyên đề Toán 12: Một người muốn làm một thùng chứa hình trụ có nắp, có dung tích 500 dm3. Cần chọn bán kính đáy và chiều cao của thùng bằng bao nhiêu để tiết kiệm nguyên liệu nhất? Biết đáy và mặt xung quanh của thùng có độ dày như nhau và xác định trước.
Lời giải:
Bán kính và chiều cao của thùng chứa lần lượt là R và h (dm; R, h > 0).
Thể tích thùng chứa hình trụ là V = πR2h = 500 (dm3).
Suy ra (dm).
Để tiết kiệm nguyên liệu nhất thì diện tích toàn phần của thùng chứa phải nhỏ nhất.
Diện tích toàn phần của thùng chứa hình trụ là
S = 2πRh + 2πR2 = = (dm2).
Xét hàm số với R ∈ (0; + ∞).
Ta có ;
∈ (0; + ∞).
Bảng biến thiên:
Từ bảng biến thiên, ta có , đạt được tại
Với thì ta có .
Vậy với bán kính (dm) và đường cao (dm) thì tiết kiệm nguyên liệu làm thùng chứa nhất.
Xem thêm lời giải Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác: