Cho tam giác đều ABC có  AB = 2 căn 3 cm. Nửa đường tròn đường kính BC cắt hai cạnh

0.9 K

Với giải Bài 5.19 trang 98 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Luyện tập chung trang 96 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 96

Bài 5.19 trang 98 Toán 9 Tập 1: Cho tam giác đều ABC có AB=23  cm.  Nửa đường tròn đường kính BC cắt hai cạnh AB và AC lần lượt tại D và E (khác B và C) (H.5.24).

Bài 5.19 trang 98 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Chứng tỏ rằng ba cung nhỏ BD, DE và EC bằng nhau. Tính số đo mỗi cung ấy.

b) Tính diện tích của hình viên phân (xem ví dụ 2) giới hạn bởi dây BD và cung nhỏ BD.

Lời giải:

Bài 5.19 trang 98 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Gọi O là trung điểm của BC.

Vì OB = OD nên tam giác OBD là tam giác cân.

 OBD^=60°  (do tam giác ABC đều).

Suy ra tam giác OBD đều.

Do đó BOD^=60° .

Tương tự ta có: COE^=60° .

Lại có: BOD^+DOE^+COE^=180°  hay DOE^=60° .

Khi đó BOD^=DOE^=COE^=60° .

b) Đường tròn (O) có bán kính OA=AB2=232=3  (cm) .

Diện tích hình viên phân giới hạn bởi dây BD và cung nhỏ BD là:

S=R2π412=32π412=3π432  cm2.

Vậy diện tích của hình viên phân giới hạn bởi dây BD và cung nhỏ BD là 3π432  cm2.

Đánh giá

0

0 đánh giá