Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc

317

Với giải Bài 5.15 trang 97 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Luyện tập chung trang 96 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 96

Bài 5.15 trang 97 Toán 9 Tập 1: Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc lần lượt hạ từ B và C xuống AC và AB. Chứng minh rằng:

a) Đường tròn đường kính BC đi qua các điểm H và K;

b) KH < BC.

Lời giải:

Bài 5.15 trang 97 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Gọi trung điểm của BC là O.

Tam giác vuông BKC có KO là đường trung tuyến KO ứng với cạnh huyền BC nên

KO = OB = OC hay B, K, C thuộc đường tròn tâm O đường kính BC.          (1)

Tam giác BHC vuông tại H có HO là đường trung tuyến ứng với cạnh huyền BC nên

HO = BO = OB hay B, H, C thuộc được đường tròn tâm O đường kính BC.   (2)

Từ (1) và (2) ta có K, H thuộc đường tròn tâm O đường kính BC.

Vậy đường tròn đường kính BC đi qua các điểm H và K.

b) Đường tròn tâm O có BC là đường kính và KH là dây không qua tâm O.

Do đó KH < BC.

Đánh giá

0

0 đánh giá