Luyện tập 1 trang 75 Toán 12 Tập 1 Cánh diều | Giải bài tập Toán 12

167

Với giải Luyện tập 1 trang 75 Toán 12 Tập 1 Cánh diều chi tiết trong Bài 3: Biểu thức toạ độ của các phép toán vectơ giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ

Luyện tập 1 trang 75 Toán 12 Tập 1: a) Cho u=2;0;1,v=0;6;2,w=2;3;2. Tìm tọa độ của vectơ u+2v4w.

b) Cho ba điểm A(– 1; – 3; – 2), B(2; 3; 4), C(3; 5; 6). Chứng minh rằng ba điểm A, B, C thẳng hàng.

Lời giải:

a) Ta có 2v=0;  12;  4,  4w=8;12;8 .

Do đó, u+2v = (– 2 + 0; 0 + 12; 1 + (– 4)) = (– 2; 12; – 3).

Suy ra u+2v4w = (– 2 – (– 8); 12 – 12; – 3 – 8).

Vậy u+2v4w = (6; 0; – 11).

b) Ta có: AB = (2 – (– 1); 3 – (– 3); 4 – (– 2)) = (3; 6; 6),

AC = (3 – (– 1); 5 – (– 3); 6 – (– 2)) = (4; 8; 8).

Ta có Luyện tập 1 trang 75 Toán 12 Cánh diều Tập 1 | Giải Toán 12 Từ đó suy ra AB=34AC.

Do đó, hai vectơ AB và AC cùng phương.

Suy ra hai đường thẳng AB và AC song song hoặc trùng nhau, mà AB ∩ AC = A.

Vậy hai đường thẳng AB và AC trùng nhau hay ba điểm A, B, C thẳng hàng.

Đánh giá

0

0 đánh giá