Cho tam giác ABC vuông tại C, có góc A = α, góc B = β (H.4.9). Hãy viết các tỉ số lượng giác của góc α, β theo độ dài

208

Với giải HĐ4 trang 70 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 11: Tỉ số lượng giác của góc nhọn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 11: Tỉ số lượng giác của góc nhọn

HĐ4 trang 70 Toán 9 Tập 1: Cho tam giác ABC vuông tại C, có A^=α,  B^=β(H.4.9). Hãy viết các tỉ số lượng giác của góc α, β theo độ dài các cạnh của tam giác ABC. Trong các tỉ số đó, cho biết các cặp tỉ số bằng nhau.

 | Kết nối tri thức Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại C, theo định nghĩa tỉ số lượng giác, ta có:

sinα=BCAB;  cosα=ACAB;  tanα=BCAC;  cotα=ACBC;

sinβ=ACAB;  cosβ=BCAB;  tanβ=ACBC;  cotβ=BCAC.

Từ đó ta có: sinα = cosβ; cosα = sinβ; tanα = cosβ; cotα = tanβ.

Lý Thuyết Tỉ số lượng giác của hai góc phụ nhau

Định lí về tỉ số lượng giác của hai góc phụ nhau

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtang góc kia.

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho α và β là hai góc phụ nhau, ta có:

sinα=cosβcosα=sinβtanα=cotβcotα=tanβ.

Ví dụ:

sin600=cos(900600)=cos300;cos52030=sin(90052030)=sin37030;tan800=cot(900800)=cot100;cot820=tan(900820)=tan80.

Đánh giá

0

0 đánh giá