Với giải Bài 1.5 trang 13 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 1: Tính đơn điệu và cực trị của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số
Bài 1.5 trang 13 Toán 12 Tập 1: Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số , trong đó N(t) được tính bằng nghìn người.
a) Tính số dân của thị trấn đó vào các năm 2000 và 2015.
b) Tính đạo hàm N’(t) và . Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.
Lời giải:
a) Dân số của thị trấn đó vào năm 2000 là: (nghìn người)
Dân số của thị trấn đó vào năm 2015 là: (nghìn người)
b) Ta có: ,
Vì và nên dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua ngưỡng 25 nghìn người.
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 1.2 trang 13 Toán 12 Tập 1: Xét sự đồng biến, nghịch biến của các hàm số sau:.....
Bài 1.3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của các hàm số sau:.....
Bài 1.4 trang 13 Toán 12 Tập 1: Xét chiều biến thiên của các hàm số sau:.....
Bài 1.7 trang 14 Toán 12 Tập 1: Tìm cực trị của các hàm số sau:.....
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 1. Tính đơn điệu và cực trị của hàm số
Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn