Với giải sách bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 12. Mời các bạn đón xem:
Giải SBT Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số
Bài 1.1 trang 8 SBT Toán 12 Tập 1: Cho hàm f(x) xác định trên ℝ và đạo hàm f'(x) có đồ thị như hình bên. Sử dụng đồ thị hàm số y = f'(x), hãy cho biết:
a) Các khoảng đồng biến, khoảng nghịch biến của hàm số f(x);
b) Hàm số f(x) có cực đại, cực tiểu không? Nếu có, hãy cho biết các điểm cực trị tương ứng.
Lời giải:
a) Quan sát đồ thị, ta có:
f'(x) < 0 trên các khoảng (−∞; 0) và (4; +∞) nên hàm số f(x) nghịch biến trên các khoảng (−∞; 0) và (4; +∞).
f'(x) > 0 trên khoảng (0; 4) nên hàm số f(x) đồng biến trên khoảng (0; 4).
b) Vì f'(x) đổi dấu từ dương sang âm khi x đi qua giá trị x = 4 nên hàm số f(x) nên hàm số đạt cực đại tại x = 4.
Vì f'(x) đổi dấu từ âm sang dương khi x đi qua giá trị x = 0 nên hàm số f(x) nên hàm số đạt cực tiểu tại x = 0.
Bài 1.2 trang 9 SBT Toán 12 Tập 1: Tìm các khoảng đồng biến, khoảng nghịch biến và cực trị (nếu có) của các hàm số sau:
a) y = x3 – 9x2 – 48x + 52;
b) y = −x3 + 6x2 + 9.
Lời giải:
a) y = x3 – 9x2 – 48x + 52
Tập xác định: D = ℝ.
Ta có: y' = 3x2 – 18x – 48
y' = 0 ⇔ 3x2 – 18x – 48 = 0 ⇔ x = 8 hoặc x = −2.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số đồng biến trên các khoảng (−∞; −2) và (8; +∞).
Hàm số nghịch biến trên khoảng (−2; 8).
Hàm số đạt cực đại tại x = −2 và yCĐ = y(−2) = 104.
Hàm số đạt cực tiểu tại x = 8 và yCT = y(8) = −396.
b) y = −x3 + 6x2 + 9
Tập xác định: D = ℝ.
Ta có: y' = −3x2 + 12x
y' = 0 ⇔ −3x2 + 12x = 0 ⇔ x = 0 hoặc x = 4.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số đồng biến trên khoảng (0; 4).
Hàm số nghịch biến trên các khoảng (−∞; 0) và (4; +∞).
Hàm số đạt cực đại tại x = 4 và yCĐ = y(4) = 41.
Hàm số đạt cực tiểu tại x = 0 và yCT = y(0) = 9.
Bài 1.3 trang 9 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau:
a) ;
b)
Lời giải:
a)
Tập xác định: D = ℝ\{0}.
Ta có: y' = 1 – =
y' = 0 ⇔ = 0 ⇔ x = ±1.
Ta có bảng biến thiên:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−1; 0) và (0; 1).
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đạt cực đại tại x = −1 và yCĐ = y(−1) = −2.
Hàm số đạt cực tiểu tại x = 1 và yCT = y(1) = 2.
b)
Tập xác định: D = ℝ.
Ta có: y' =
y' = 0 ⇔ = 0 ⇔ 1 – x2 = 0 ⇔ x = ±1.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đồng biến trên khoảng (−1; 1).
Hàm số đạt cực đại tại x = 1 và yCĐ = y(1) = .
Hàm số đạt cực tiểu tại x = −1 và yCT = y(−1) = .
Bài 1.4 trang 9 SBT Toán 12 Tập 1: Tìm các khoảng đơn điệu và các cực trị (nếu có) của các hàm số sau:
a) y = x4 – 2x2 + 3;
b) y = x2lnx.
Lời giải:
a) y = x4 – 2x2 + 3
Tập xác định: D = ℝ.
Ta có: y' = 4x3 – 4x
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ x = 0 hoặc x = ±1.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (0; 1).
Hàm số đồng biến trên các khoảng (−1; 0) và (1; +∞).
Hàm số đạt cực đại tại x = 0 và yCĐ = y(0) = 3.
Hàm số đạt cực tiểu tại x = 1 và tại x = −1 và yCT = y(1) = y(−1) = 2.
b) y = x2lnx
Tập xác định: D = (0; +∞).
Ta có: y' = 2xlnx + x = x(2lnx + 1)
y' = 0 ⇔ x(2lnx + 1) = 0 ⇔ x = .
Từ đây ta có bảng biến thiên như sau:
Hàm số nghịch biến trên khoảng .
Hàm số đồng biến trên khoảng .
Hàm số đạt cực tiểu tại x = và yCT = y = .
Bài 1.5 trang 9 SBT Toán 12 Tập 1: Tìm các giá trị của tham số m sao cho hàm số y = x3 + mx2 + 3x + 2 đồng biến trên ℝ.
Lời giải:
Tập xác định : D = ℝ.
Ta có: y' = 3x2 + 2mx + 3.
Để hàm số đồng biến trên ℝ ⇔y' ≥ 0 với mọi x ∈ ℝ và y' = 0 chỉ tại hữu hạn điểm trong ℝ.
⇒⇔⇔⇒ −3 ≤ m ≤ 3.
Vậy hàm số đã cho đồng biến trên ℝ khi m ∈ [−3; 3].
Bài 1.6 trang 9 SBT Toán 12 Tập 1: Chứng minh rằng hàm số không có đạo hàm tại x = 0 nhưng có cực tiểu tại điểm x = 0.
Lời giải:
Xét
Như vậy, hàm số không có đạo hàm tại x = 0.
Với mọi x ≠ 0, f(x) > 0 = f(0) nên hàm số f(x) đạt cực tiểu tại x = 0.
Bài 1.7 trang 9 SBT Toán 12 Tập 1: Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí C(x) và hàm doanh thu R(x) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau:
C(x) = 1,2x – 0,0001x2, 0 ≤ x ≤ 6 000,
R(x) = 3,6x – 0,0005x2, 0 ≤ x ≤ 6 000,
trong đó x là số lượng đồ chơi loại đó được sản xuất và bán ra. Xác định khoảng của x để hàm lợi nhuận P(x) = R(x) – C(x) đồng biến trên khoảng đó. Giải thích ý nghĩa thực tiễn và kết quả nhận được.
Lời giải:
Ta có:
P(x) = R(x) – C(x) = 3,6x – 0,0005x2 − 1,2x + 0,0001x2 = 2,4x – 0,0004x2,
0 ≤ x ≤ 6 000.
P'(x) = 2,4 – 0,0008x
P'(x) > 0 ⇔ 2,4 – 0,0008x > 0 ⇔ 0 < x < 3 000.
Từ đó, hàm lợi nhuận P(x) đồng biến trên khoảng (0; 30 000). Điều này nghĩa là khi số lượng đồ chơi loại đó được sản xuất và bán ra nằm trong khoảng (0; 3 000) thì càng sản xuất và bán nhiều, lợi nhuận thu được càng lớn.
Bài 1.8 trang 9 SBT Toán 12 Tập 1: Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là C(x) = 25,5x + 1 000 và R(x) = 75,5x, trong đó x là số đơn vị sản phẩm đó được sản xuất và bán ra.
a) Tính hàm lợi nhuận trung bình .
b) Tìm lợi nhuận trung bình khi mức sản xuất x lần lượt là 100, 500 và 1 000 đơn vị sản phẩm.
c) Xét tính đơn điệu của hàm lợi nhuận trung bình trên khoảng (0; +∞) và tính giới hạn của hàm số này khi x → +∞. Giải thích ý nghĩa thực tiễn của kết quả nhận được.
Lời giải:
a) Ta có:
(triệu đồng).
Tập xác định của hàm lợi nhuận trung bình là: (0; +∞).
b) Với x = 100 thì (triệu đồng).
Với x = 500 thì (triệu đồng).
Với x = 1 000 thì (triệu đồng).
c) Ta có:
> 0 với mọi x ∈ (0; +∞).
Vậy hàm lợi nhuận trung bình đồng biến trên khoảng (0; +∞).
Mặt khác,
Ta có bảng biến thiên như sau:
Như vậy, mặc dù lợi nhuận trung bình luôn tăng khi mức sản xuất tăng nhưng không vượt quá 50 triệu đồng.
Bài 1.9 trang 10 SBT Toán 12 Tập 1: Một con lắc lò xo, gồm một vật nặng có khối lượng 1 kg được gắn vào một lò xo được cố định một đầu, dao động điều hòa với biên độ A = 0,24 m và chu kì T = 4 giây. Vị trí x (mét) của vật tại thời điểm t được xác định bởi x(t) = A cos(ωt), trong đó là tần số góc và thời gian t tính bằng giây.
a) Tìm vị trí của vật tại thời điểm t và tại thời điểm t = 0,5 giây.
b) Tìm vận tốc v của vật tại thời điểm t giây và tìm vận tốc của vật khi t = 0,5 giây.
c) Tìm gia tốc a của vật.
d) Sử dụng Định luật thứ hai của Newton F = ma, tìm độ lớn và hướng của lực tác dụng lên vật khi t = 0,5 giây.
e) Tìm thời gian tối thiểu để vật chuyển động từ vị trí ban đầu đến vị trí x = −0,12 m. Tìm vận tốc của vật khi x = −0,12 m.
Lời giải:
a) Ta có:
Khi đó, vị trí của vật tại thời điểm t là x(t) = 0,24cos (m).
Suy ra vị trí của vật tại thời điểm t = 0,5 giây là x(0,5) = 0,24cos = (m).
b) Vận tốc của vật là v(t) = x'(t) = −0,12sin (m/s).
Tại thời điểm t = 0,5 giây thì v(0,5) = −0,12sin = −0,06π (m/s).
Dấu âm của vận tốc chứng tỏ tại thời điểm này, vật đang chuyển động theo chiều ngược với chiều dương của trục đã chọn.
c) Gia tốc của vật là: a(t) = v'(t) = −0,06π2cos (m/s2).
d) Tại thời điểm t = 0,5 giây, ta có lực tác động lên vật là:
F(0,5) = m.a(0,5) = −0,06π2cos = −0,03π (N).
Vậy độ lớn của lực tác dụng lên vật là 0,03π N và lực có hướng ngược với chiều dương của trục đã chọn.
e) Vị trí của vật tại thời điểm ban đầu t = 0 là x(0) = 0,24 (m).
Ta có: x(t) = 0,24cos = −0,12 ⇔ cos =
Nghiệm t dương nhỏ nhất của phương trình trên là t = .
Vậy thời gian tối thiểu để vật chuyển động từ vị trí ban đầu đến vị trí x = −0,12 m là t = giây.
Khi đó, vận tốc của vật là = −0,12πsin = −0,06π (m/s).
Bài 1.10 trang 10 SBT Toán 12 Tập 1: Một vật chuyển động dọc theo trục số nằm ngang, chiều dương từ trái sang phải. Giả sử vị trí của vật x (mét) từ thời điểm t = 0 giây đến thời điểm t = 5 giây được cho bởi công thức x(t) = t3 – 7t2 + 11t + 5.
a) Xác định vận tốc v của vật. Xác định khoảng thời gian vật chuyển động sang phải và khoảng thời gian vật chuyển sang trái.
b) Tìm tốc độ của vật và thời điểm vật dừng lại. Tính tốc độ cực đại của vật và khoảng thời gian từ t = 1 giây đến t = 4 giây.
c) Xác định gia tốc a của vật. Tìm khoảng thời gian vật tăng tốc và khoảng thời gian vật giảm tốc.
Lời giải:
a) Ta có: x(t) = t3 – 7t2 + 11t + 5 với t ∈ [0; 5].
Vận tốc của vật là v(t) = x'(t) = 3t2 – 14t + 11, t ∈ [0; 5].
v(t) = 0 ⇔ 3t2 – 14t + 11 = 0 ⇔ t = 1 hoặc t = .
Ta có bảng biến thiên như sau:
Dựa vào bảng trên, v(t) > 0 khi t ∈ (0; 1) hoặc ; v(t) < 0 khi t ∈ .
Vật chuyển động theo chiều dương khi vận tốc v(t) > 0.
Do đó, vật chuyển động sang phải trong các khoảng thời điểm từ 0 đến 1 giây và từ giây đến 5 giây; vật chuyển động sang trái trong các khoảng thời gian từ 1 giây đến giây.
b) Tốc độ của vật là độ lớn của vận tốc, tức là:
, t ∈ [0; 5].
Ta có = 0 ⇔ t = 1 hoặc t = .
Vậy vật dừng lại tại các thời điểm t = 1 giây hoặc t = giây.
Ta có: v(t) = 3t2 – 14t + 11, t ∈ [0; 5].
v'(t) = 6t – 14, t ∈ [0; 5].
v'(t) = 0 ⇔ 6t – 14 = 0 ⇔ t =
Xét trên đoạn [1; 4], ta có: v(1) = 0, v(4) = −5, v .
Vì do đó .
Vậy tốc độ cực đại của vật trong khoảng thời gian từ t = 1 giây đến t = 4 giây là (m/s).
c) Gia tốc của vật là: a(t) = v'(t) = 6t – 14.
Ta có bảng biến thiên sau:
Từ đây, a(t) > 0 khi t ∈ và a(t) < 0 khi t ∈ .
Vật tăng tốc khi a(t) > 0 và vật giảm tốc khi a(t) < 0. Vậy vật tăng tốc trong khoảng thời gian từ giây đến 5 giây và vật giảm tốc trong khoảng thời gian từ 0 giây đến giây.
Lý thuyết Tính đơn điệu và cực trị của hàm số
1. Tính đơn điệu của hàm số
Khái niệm tính đơn điệu của hàm số
Giả sử K là một khoảng, một đoạn hoặc một nửa khoảng và y = f(x) là hàm số xác định trên K
|
Ví dụ: Hàm số y = |x| đồng biến trên khoảng , nghịch biến trên khoảng
Định lý
Cho hàm số y = f(x) có đạo hàm trên khoảng K.
|
Ví dụ: Hàm số có y’ = 2x – 4
Sử dụng BBT xét tính đơn điệu của hàm số
Các bước để xét tính đơn điệu của hàm số y = f(x)
|
Ví dụ: Xét chiều biến thiên của hàm số
1. Tập xác định của hàm số là
2. Ta có:
3. BBT
4. Hàm số đồng biến trên các khoảng và
2. Cực trị của hàm số
Khái niệm cực trị của hàm số
Cho hàm số y = f(x) xác định và liên tục trên khoảng (a;b) (a có thể là , b có thể là ) và điểm .
|
Ví dụ: Cho đồ thị của hàm số y = f(x) như sau
Hàm số đạt cực tiểu tại x = -1 và = y(-1) = 2
Hàm số đạt cực đại tại x = 0 và = y(0) = 3
Hàm số đạt cực tiểu tại x = 1 và = y(1) = 2
Cách tìm cực trị của hàm số
Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm và có đạo hàm trên các khoảng và . Khi đó:
|
Ví dụ: Tìm cực trị của hàm số .
Tập xác định của hàm số là R.
Ta có: ; y’ = 0 x = 1 hoặc x = 3.
BBT:
Hàm số đạt cực đại tại x = 1 và = y(1) = 34
Hàm số đạt cực tiểu tại x = 3 và = y(3) = 30
Xem thêm các bài giải SBT Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 1: Tính đơn điệu và cực trị của hàm số
Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 3: Đường tiệm cận của đồ thị hàm số
Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn