Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Bài tập cuối chương 4 trang 42 chi tiết sách Toán 12 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài tập cuối chương 4 trang 42
Bài tập
A. x2 + ex + 2 023.
B. x2 + ex + C.
C. x2 + ex + 2 022.
D. x2 + ex.
Lời giải:
Đáp án đúng là: C
Ta có .
Suy ra F(x) = x2 + ex + C.
Mà F(0) = 2 023 nên 02 + e0 + C = 2 023, suy ra C = 2 022.
Vậy F(x) = x2 + ex + 2 022.
A. .
B. 7.
C. 9.
D. .
Lời giải:
Đáp án đúng là: C
Ta có f(x) = F'(x) = (x3)' = 3x2.
Khi đó = (2 ∙ 2 + 23) – (2 ∙ 1 + 13) = 9.
Bài 3 trang 42 Toán 12 Tập 2: Biết . Khi đó, bằng:
A. 1.
B. 4.
C. 2.
D. 0.
Lời giải:
Đáp án đúng là: A
Ta có .
Lại có . Mà .
Do đó, . Suy ra
Bài 4 trang 42 Toán 12 Tập 2: Tìm:
Lời giải:
b) Cho hàm số (x > 0). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng (0; + ∞) sao cho G(1) = 2 023.
Lời giải:
a) Ta có .
Suy ra .
Mà F(0) = 2 023 nên , suy ra C = 2 024.
Vậy .
b) Ta có (do x > 0).
Suy ra G(x) = ln x + C.
Mà G(1) = 2 023 nên ln 1 + C = 2 023, suy ra C = 2 023.
Vậy G(x) = ln x + 2 023.
Bài 6 trang 42 Toán 12 Tập 2: Tính:
Lời giải:
v(t) = – 0,12t2 + 1,2t,
với t tính bằng phút, v(t) tính bằng mét/phút. Tại thời điểm xuất phát (t = 0), khinh khí cầu ở độ cao 520 m và 5 phút sau khi xuất phát, khinh khí cầu đã ở độ cao 530 m.
(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)
a) Viết công thức xác định hàm số h(t) (0 ≤ t ≤ 29).
b) Độ cao tối đa của khinh khí cầu khi bay là bao nhiêu?
c) Khi nào khinh khí cầu sẽ trở lại độ cao khi xuất phát?
Lời giải:
a) Hàm số h(t) là một nguyên hàm của hàm số v(t).
Ta có .
Suy ra h(t) = – 0,04t3 + 0,6t2 + C.
Vì với t = 0 thì h = 520, tức là h(0) = 520, suy ra C = 520.
Vậy h(t) = – 0,04t3 + 0,6t2 + 520 (0 ≤ t ≤ 29).
b) Độ cao tối đa của khinh khí cầu khi bay chính là giá trị lớn nhất của hàm số h(t) trên đoạn [0; 29].
Ta có h'(t) = v(t) = – 0,12t2 + 1,2t.
Trên khoảng (0; 29), h'(t) = 0 khi t = 10.
h(0) = 520, h(10) = 540, h(29) = 49,04.
Suy ra tại t = 10.
Vậy độ cao tối đa của khinh khí cầu là 540 m.
c) Khinh khí cầu trở lại độ cao khi xuất phát khi h(t) = 520, tức là
– 0,04t3 + 0,6t2 + 520 = 520 ⇔ 0,04t3 – 0,6t2 = 0 ⇔ t = 0 hoặc t = 15.
Với t = 0, tức là tại thời điểm xuất phát.
Với t = 15 ∈ [0; 29], thỏa mãn.
Vậy sau 15 phút thì khinh khí cầu trở lại độ cao khi xuất phát.
m(t) = 500 + 50 – 10t,
trong đó t tính theo ngày (0 ≤ t ≤ 100), m(t) tính theo người.
(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)
a) Khi nào có 360 công nhân được sử dụng?
b) Khi nào số công nhân được sử dụng lớn nhất?
c) Gọi M(t) là số ngày công được tính đến hết ngày thứ t (kể từ khi khởi công công trình). Trong kinh tế xây dựng, người ta đã biết rằng M'(t) = m(t). Tổng cộng cần bao nhiêu ngày công để hoàn thành công trình xây dựng đó?
Lời giải:
a) Có 360 công nhân được sử dụng khi m(t) = 360, tức là
500 + 50 – 10t = 360 ⇔ 10t – 50 – 140 = 0 ⇒ = 7 ⇒ t = 49 ∈ [0; 100].
Vậy đến ngày thứ 49, có 360 công nhân được sử dụng.
b) Số công nhân được sử dụng lớn nhất chính là giá trị lớn nhất của hàm số m(t) trên đoạn [0; 100].
Ta có m'(t) = .
Trên khoảng (0; 100), m'(t) = 0 khi t = 6,25.
m(0) = 500; m(6,25) = 562,5; m(100) = 0.
Suy ra > khi t = 6,25.
Vậy đến ngày thứ 6 thì số lượng công nhân được sử dụng lớn nhất.
c) Số ngày công để hoàn thành công trình xây dựng đó là:
(ngày công).
Lời giải:
Hàm số P(t) là một nguyên hàm của hàm số P'(t).
Ta có .
Suy ra P(t) = – Ce– 0,02t + C1.
Với t = 0 thì P = 1, tức là P(0) = 0, suy ra – C + C1 = 1. (1)
Với t = 4 thì P = 55, tức là P(4), suy ra – Ce– 0,02 ∙ 4 + C1 = 55. (2)
Từ (1) và (2) suy ra C ≈ 702,36; C1 ≈ 703,36.
Vậy số học sinh bị nhiễm virus cúm sau 10 ngày là
P(10) = – 702,36e– 0,02 ∙ 10 + 703,36 ≈ 128 (học sinh).
Thời gian (giây) |
0 |
10 |
20 |
30 |
40 |
50 |
60 |
Tốc độ (mét/giây) |
0 |
5 |
21 |
40 |
62 |
78 |
83 |
Bảng 1
a) Hãy xây dựng hàm số bậc ba y = f(x) = ax3 + bx2 + cx + d (a ≠ 0) để biểu diễn các số liệu ở Bảng 1, tức là ở hệ trục toạ độ Oxy, đồ thị của hàm số đó trên nửa khoảng [0; +∞) “gần” với các điểm O(0; 0), B(10; 5), C(20; 21), D(30; 40), E(40; 62), G(50; 78), K(60;83) (Nguồn: R. Larson and B. Edwards, Calculus 106, Cengage 2014).
b) Hãy tính (gần đúng) quãng đường mà xe ô tô đó đã đi được tính đến giây thứ 60 của quá trình thử nghiệm.
Lời giải:
a) Hàm số bậc ba y = f(x) = ax3 + bx2 + cx + d (a ≠ 0) đi qua các điểm O(0; 0), B(10; 5), C(20; 21), D(30; 40) nên ta có hệ phương trình sau:
Vậy y = f(x) = (x ∈ [0; +∞)).
b) Gọi v(t) là tốc độ của chiếc xe ô tô đó với t tính bằng giây và v(t) tính bằng mét/giây.
Khi đó ta có .
Vậy quãng đường mà xe ô tô đó đã đi được tính đến giây thứ 60 của quá trình thử nghiệm là:
(m)
Bài 11 trang 44 Toán 12 Tập 2: Giả sử A, B lần lượt là diện tích các hình được tô màu ở Hình 37.
a) Tính các diện tích A, B.
b) Biết B = 3A. Biểu diễn b theo a.
Lời giải:
a) Quan sát Hình 37, ta thấy A là hình phẳng giới hạn bởi đồ thị hàm số y = ex, trục Ox và hai đường thẳng x = 0, x = a (a > 0).
Do đó, .
Tương tự, ta thấy hình B là hình phẳng giới hạn bởi đồ thị hàm số y = ex, trục Ox và hai đường thẳng x = 0, x = b (b > 0).
Do đó, .
b) Ta có B = 3A nên eb – 1 = 3(ea – 1) ⇔ eb = 3ea – 2 ⇔ b = ln (3ea – 2).
Lời giải:
Ta tính diện tích phần cổng hình parabol. Chọn hệ trục tọa độ Oxy với gốc tọa độ O trùng với chân bên trái cổng parabol như hình sau:
Gọi phương trình parabol là y = f(x) = ax2 + bx + c (a ≠ 0).
Parabol đi qua các điểm (0; 0), (2; 4,8) và (4; 0) nên ta có:
Do đó, y = f(x) = – 1,2x2 + 4,8x.
Diện tích phần cổng hình parabol chính là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) = – 1,2x2 + 4,8x, trục Ox và hai đường thẳng x = 0, x = 4.
Ta có (m2).
Diện tích phần mặt ngoài của bức tường cần sơn là:
S = 10 ∙ (2 + 4 + 2) – 12,8 = 67,2 (m2).
Tổng chi phí để sơn lại toàn bộ mặt ngoài của bức tường đó là:
67,2 ∙ 15 000 = 1 008 000 (đồng).
Bài 13 trang 44 Toán 12 Tập 2: Cho khối tròn xoay như Hình 39.
a) Hình phẳng được giới hạn bởi các đường nào để khi quay quanh trục Ox ta được khối tròn xoay như Hình 39?
b) Tính thể tích khối tròn xoay đó.
Lời giải:
a) Hình phẳng được giới hạn bởi đồ thị hàm số f(x) = x2 – 4x + 5, trục Ox và hai đường thẳng x = 1, x = 4; quay hình phẳng này quanh trục Ox ta được khối tròn xoay như Hình 39.
b) Thể tích khối tròn xoay đó là:
Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
§4. Ứng dụng hình học của tích phân
Chủ đề 2. Thực hành tạo đồng hồ Mặt Trời