Với giải Bài 9 trang 43 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng
Bài 9 trang 43 Toán 12 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 5a, SA = 3a và SA ⊥ (ABCD). Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 19, tính khoảng cách từ điểm A đến mặt phẳng (SBC).
Lời giải:
Ta có A ≡ O(0; 0; 0), B(2a; 0; 0), S(0; 0; 3a), C(2a; 5a; 0).
Suy ra .
Có .
Mặt phẳng (SBC) đi qua điểm S(0; 0; 3a) và nhận làm một vectơ pháp tuyến có phương trình là: 3x + 2(z – 3a) = 0 ⇔ 3x + 2z – 6a = 0.
.
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 4 trang 38 Toán 12 Tập 2: Viết phương trình mặt phẳng (P) trong mỗi trường hợp sau:...
Thực hành 6 trang 40 Toán 12 Tập 2: Tìm các cặp mặt phẳng vuông góc trong các mặt phẳng sau:...
Bài 1 trang 42 Toán 12 Tập 2: Viết phương trình của mặt phẳng:...
Bài 2 trang 42 Toán 12 Tập 2: a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz)....
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: