Trong không gian Oxyz, cho mặt phẳng (α) có cặp vectơ chỉ phương a = (a1; a2; a3 ), b = (b1; b2; b3)

127

Với giải Hoạt động khám phá 2 trang 33 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng

Hoạt động khám phá 2 trang 33 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (α) có cặp vectơ chỉ phương a=a1;a2;a3, b=b1;b2;b3. Xét vectơ n=a2b3a3b2;a3b1a1b3;a1b2a2b1.

a) Vectơ n có khác 0 hay không?

b) Tính a.n;b.n.

c) Vectơ n có phải là vectơ pháp tuyến của mặt phẳng (α) không?

Lời giải:

a) n=a2b3a3b2;a3b1a1b3;a1b2a2b10

b) Ta có

a.n=a1.a2b3a3b2+a2.a3b1a1b3+a3.a1b2a2b1

=a1a2b3a1a3b2+a2a3b1a2a1b3+a3a1b2a3a2b1

=a1a2b3a2a1b3+a2a3b1a3a2b1+a3a1b2a1a3b2=0

b.n=b1.a2b3a3b2+b2.a3b1a1b3+b3.a1b2a2b1

=a2b3b1a3b2b1+a3b1b2a1b3b2+a1b2b3a2b1b3

=a2b3b1a2b1b3+a3b1b2a3b2b1+a1b2b3a1b3b2=0

c) Vì a.n=0;b.n=0 nên an;bn

Do đó n là vectơ pháp tuyến của mặt phẳng (α).

Đánh giá

0

0 đánh giá