Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a√2, chiều cao bằng 2a và O là tâm của đáy

91

Với giải Vận dụng 6 trang 42 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng

Vận dụng 6 trang 42 Toán 12 Tập 2: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a2, chiều cao bằng 2a và O là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ Oxyz như Hình 18, tính khoảng cách từ điểm C đến mặt phẳng (SAB).

Vận dụng 6 trang 42 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Vì ABCD là hình vuông cạnh a2 và O là tâm của hình vuông nên ta có:

OA=OB=OC=OD=a.

Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).

Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:

xa+ya+z2a=1 hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.

Ta có dC,SAB=2a2a22+22+12=4a3.

Vậy dC,SAB=43a

Đánh giá

0

0 đánh giá