Giải Toán 8 trang 80 Tập 2 Kết nối tri thức

124

Với lời giải Toán 8 trang 80 Tập 2 chi tiết trong Bài 33: Hai tam giác đồng dạng sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 33: Hai tam giác đồng dạng

Luyện tập 1 trang 80 Toán 8 Tập 2: Trong các tam giác được vẽ trên ô lưới vuông (H.9.3), có một cặp tam giác đồng dạng. Hãy chỉ ra cặp tam giác đó, viết đúng kí hiệu đồng dạng và tìm tỉ số đồng dạng của chúng.

Luyện tập 1 trang 80 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

Ta có ∆ABC ∽ ∆DEF với tỉ số đồng dạng BCEF=126=2.

Nhìn hình vẽ ta thấy tam giác GHK vuông tại G nên không thể đồng dạng với hai tam giác còn lại.

Định lí

Thử thách nhỏ trang 80 Toán 8 Tập 2: Cho ΔABC ∽ ΔMNP. Chứng minh rằng:

a) Nếu tam giác ABC cân tại A thì tam giác MNP cân tại đỉnh M.

b) Nếu tam giác ABC đều thì tam giác MNP đều.

c) Nếu AB ≥ AC ≥ BC thì MN ≥ MP ≥ NP.

Lời giải:

a) Tam giác ABC cân tại A nên B^=C^. (1)

Vì ∆ABC ∽ ∆MNP nên A^=M^; B^=N^;C^=P^. (2)

Từ (1) và (2) suy ra N^=P^ suy ra tam giác MNP cân tại M.

b) Vì tam giác ABC đều nên A^=C^=B^=60°. (3)

Từ (1) và (3) suy ra M^=N^=P^=60° nên tam giác MNP là tam giác đều.

c) Vì tam giác ABC có AB ≥ AC ≥ BC suy ra C^B^A^ (quan hệ giữa góc và cạnh đối diện trong một tam giác). (4)

Từ (2) và (4) suy ra P^N^M^ nên MN ≥ MP ≥ NP.

HĐ2 trang 80 Toán 8 Tập 2: Cho tam giác ABC và các điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC như Hình 9.4.

- Hãy viết các cặp góc bằng nhau của hai tam giác ABC và AMN, giải thích vì sao chúng bằng nhau.

- Kẻ đường thẳng đi qua N song song với AB và cắt BC tại P. Hãy chứng tỏ MN = BP và suy ra MNBC=ANAC=AMAB.

- Tam giác ABC và tam giác AMN có đồng dạng không? Nếu có hãy viết đúng kí hiệu đồng dạng.

HĐ2 trang 80 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

- Các cặp góc bằng nhau của hai tam giác ABC và AMN: 

B^=AMN^;   C^=ANM^ (do MN // BC và các cặp góc này ở vị trí đồng vị);

A^ chung.

- Có MN // BP (vì MN // BC), MB // NP (vì  AB // NP) nên MNPB là hình bình hành.

Suy ra MN = BP. Suy ra  MNBC=BPBC=ANAC=AMAB (Sử dụng định lí Thalès).

- Có B^=AMN^;   C^=ANM^; A^  chung và AMAB=ANAC=MNBC, suy ra ∆ABC ∽ ∆AMN.

Đánh giá

0

0 đánh giá