Giải SBT Toán 11 trang 72 Tập 2 Kết nối tri thức

152

Với lời giải SBT Toán 11 trang 72 Tập 2 chi tiết trong Bài tập ôn tập cuối năm sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập ôn tập cuối năm

Bài 39 trang 72 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, đường thẳng SA vuông góc với mặt phẳng (ABCD) và SA = a2.

a) Chứng minh (SBC) (SAB).

b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).

c) Tính theo a khoảng cách từ điểm A đến mặt phẳng (SBC).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a

a) Do ABCD là hình vuông nên BC AB

Mà SA BC (do SA (ABCD)) nên BC (SAB), suy ra (SBC) (SAB).

b) Vì SA (ABCD) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

Do đó, góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng SC và AC, mà (SC, AC) = SCA^ .

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2.

Vì SA (ABCD) nên SA AC hay tam giác SAC vuông tại A.

Xét tam giác SAC vuông tại A, có AC = SA = a2 nên tam giác SAC vuông cân tại A, suy ra SCA^=45°.

Vậy góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45°.

c) Kẻ AH SB tại H.

Vì (SBC) (SAB), (SBC) (SAB) = SB mà AH SB nên AH (SBC).

Khi đó d(A, (SBC)) = AH.

Vì SA (ABCD) nên SA AB hay tam giác SAB vuông tại A.

Xét tam giác SAB vuông tại A, AH là đường cao, có:

1AH2=1SA2+1AB2=12a2+1a2=32a2AH=6a3.

Vậy d(A, (SBC)) = 6a3.

Bài 40 trang 72 SBT Toán 11 Tập 2: Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA = a2.

a) Tính theo a thể tích khối chóp S.ABCD.

b) Tính theo a khoảng cách giữa hai đường thẳng AD và SB.

Lời giải:

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA = acăn2

a) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC, BD.

Vì S.ABCD là hình chóp đều nên SO (ABCD).

Xét tam giác vuông ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2.

Vì O là trung điểm của AC nên AO = OC = a22.

Vì SO (ABCD) nên SO AC.

Xét tam giác SOA vuông tại O, có SO = SA2OA2=2a2a22=a62.

Khi đó VS.ABCD=13SABCDSO=13a2a62=a366.

Vậy VS.ABCD=a366.

b) Có ABCD là hình vuông nên AD // BC suy ra AD // (SBC).

Khi đó d(AD, SB) = d(AD, (SBC)) = d(A, (SBC)).

Đường thẳng AO cắt mặt phẳng (SBC) tại C và O là trung điểm của AC nên

d(A, (SBC)) = 2d(O, (SBC)).

Kẻ OM BC tại M, OH SM tại H.

Vì BC OM, BC SO (do SO (ABCD)) nên BC (SOM), suy ra (SBC) (SOM).

Mà OH SM nên OH (SBC). Do đó d(O, (SBC)) = OH.

Có OM // AB (vì cùng vuông góc với BC).

Xét tam giác ABC có O là trung điểm của AC, OM // AB nên M là trung điểm của BC, suy ra OM là đường trung bình. Do đó OM = AB2=a2.

Vì SO (ABCD) nên SO OM hay tam giác SOM vuông tại O.

Xét tam giác SOM vuông tại O, OH là đường cao có:

1OH2=1SO2+1OM2=46a2+4a2=143a2OH=a4214.

Vậy d(AD, SB) = 2OH = a427.

Bài 41 trang 72 SBT Toán 11 Tập 2: Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh bằng a, tam giác AB'C' cân tại A, mặt phẳng (AB'C') vuông góc với mặt phẳng (A'B'C') và AA' = a3.

a) Chứng minh rằng BCC'B' là hình chữ nhật.

b) Tính theo a thể tích khối lăng trụ ABC.A'B'C'.

c) Tính góc giữa đường thẳng AA' và mặt phẳng (A'B'C').

Lời giải:

Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều

a) Kẻ AH B'C' tại H.

Do tam giác AB'C' cân tại A mà AH B'C' nên AH đồng thời là trung tuyến hay H là trung điểm của B'C'.

Do tam giác A'B'C' là tam giác đều mà A'H là trung tuyến nên A'H đồng thời là đường cao hay A'H B'C'.

Vì AH B'C' và A'H B'C' nên B'C' (A'AH), suy ra B'C' A'A.

Do ABB'A' là hình bình hành nên AA' // BB' mà B'C' A'A nên BB' B'C'.

Vì BCC'B' là hình bình hành có BB' B'C' nên BCC'B' là hình chữ nhật.

b) Vì (AB'C') (A'B'C'), (AB'C') (A'B'C') = B'C' mà AH B'C' nên AH (A'B'C').

Suy ra AH A'H hay tam giác AHA' vuông tại H.

Vì tam giác A'B'C' là tam giác đều cạnh a, đường cao A'H nên A'H = a32, SA'B'C'=a234.

Xét tam giác AHA' vuông tại H có: AH = AA'2A'H2=3a23a24=3a2.

Khi đó VABC.A'B'C'=SA'B'C'AH=a2343a2=33a38 .

Vậy VABC.A'B'C'=33a38.

c) Vì AH (A'B'C') nên HA' là hình chiếu của AA' trên mặt phẳng (A'B'C').

Do đó góc giữa đường thẳng AA' và mặt phẳng (A'B'C') bằng góc giữa hai đường thẳng AA' và A'H, mà (AA', A'H) = AA'H^.

Xét tam giác AA'H vuông tại H có tanAA'H^=AHA'H=3a2:a32 .

Suy ra, AA'H^=60°.

Vậy góc giữa đường thẳng AA' và mặt phẳng (A'B'C') bằng 60°.

Bài 42 trang 72 SBT Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a; AD = a2, góc giữa đường thẳng A'C và mặt phẳng (ABCD) bằng 30°.

a) Tính theo a thể tích khối hộp chữ nhật.

b) Tính theo a khoảng cách giữa hai đường thẳng BD và CD'.

Lời giải:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a; AD = acăn2

a) Vì AA' (ABCD) nên AC là hình chiếu của A'C trên mặt phẳng (ABCD).

Do đó góc giữa đường thẳng A'C và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng A'C và AC, mà (A'C, AC) = A'CA^=30°.

Vì ABCD là hình chữ nhật nên AB = CD = a; AD = BC = a2.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+2a2=a3.

Xét tam giác A'AC vuông tại A, có AA' = AC.tan30° = a333=a.

Khi đó VABCD.A'B'C'D' = AA' . AB . AD = a.a.a2 = a32.

b) Có A'D' // BC và A'D' = BC (do cùng song song và bằng AD).

Do đó A'D'CB là hình bình hành, suy ra CD' // BA'. Do đó CD' // (A'DB).

Khi đó d(BD, CD') = d(CD', (A'DB)) = d(D', (A'DB)).

Vì AD' cắt mặt phẳng (A'BD) tại trung điểm của đoạn AD' nên

d(D', (A'DB)) = d(A, (A'DB)) = h.

Áp dụng kết quả bài 7.7 trang 28 SBT Toán tập 2, ta có:

1h2=1A'A2+1AD2+1AB2=1a2+12a2+1a2=52a2h=a105.

Vậy d(BD, CD') =a105 .

Bài 43 trang 72 SBT Toán 11 Tập 2: Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a, AA' = 2a. Gọi M, N lần lượt là trung điểm của các cạnh BB' và CC'.

a) Tính theo a thể tích khối tứ diện AA'MN.

b) Tính côsin góc nhị diện [A, MN, A'].

Lời giải:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a

a) Ta có VNAA'M=13d(N,(AMA')).SAA'M.

Do CC' // AA' nên CC' // (AA'B'B) nên d(N, (AMA')) = d(C, (AA'B'B)).

Kẻ CH AB tại H.

Vì BB' (ABC) nên BB' CH mà CH AB nên CH (AA'B'B).

Do đó d(C, (AA'B'B)) = CH.

Xét tam giác ABC đều cạnh a, CH là đường cao có CH = a32,

suy ra d(C, (AA'B'B)) = a32.

Vì ABB'A' là hình chữ nhật có d(M, AA') = AB = a.

Do đó SAA'M=12d(M,AA').AA' = 12.a.2a = a2.

Vậy VNAA'M=13dN,(AMA')SAA'M=13a32a2=a336.

b) Gọi I là trung điểm của MN.

Vì M, N là trung điểm của BB' và CC' nên CN = C'N, BM = B'M.

Mà AA' = BB' = CC' = 2a nên CN = C'N = BM = B'M = a.

Vì ABC.A'B'C' là hình lăng trụ tam giác đều nên

AB = AC = BC = A'B' = A'C' = B'C' = a.

Xét tam giác CAN vuông tại C, có AN2 = AC2 + CN2 = a2 + a2 = 2a2.

Xét tam giác A'C'N vuông tại C', có A'N2 = A'C'2 + C'N2 = a2 + a2 = 2a2.

Xét tam giác A'B'M vuông tại B', có A'M2 = A'B'2 + B'M2 = a2 + a2 = 2a2.

Xét tam giác ABM vuông tại B, có AM2 = AB2 + BM2 = a2 + a2 = 2a2.

Do đó AN = A'N = A'M = AM.

Xét tam giác A'MN có A'M = A'N nên tam giác A'MN cân tại A' mà A'I là trung tuyến nên A'I đồng thời là đường cao hay A'I MN.

Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A mà AI là trung tuyến nên AI đồng thời là đường cao hay AI MN.

Vì A'I MN và AI MN nên [A, MN, A'] = AIA'^.

Vì I là trung điểm của MN mà MN = BC = a nên MI = IN = MN2=a2.

Xét tam giác A'MI vuông tại I, có A'I=A'M2MI2=2a2a24=a72.

Xét tam giác ANI vuông tại I, có AI=AN2NI2=2a2a24=a72.

Áp dụng định lí côsin trong tam giác AA'I, ta có:

cosAIA'^=AI2+A'I2AA'22AIA'I=7a24+7a244a227a24=17.

Vậy côsin góc nhị diện [A, MN, A'] bằng -17.

Đánh giá

0

0 đánh giá