Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a, AA' = 2a

631

Với giải Bài 43 trang 72 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập ôn tập cuối năm

Bài 43 trang 72 SBT Toán 11 Tập 2: Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a, AA' = 2a. Gọi M, N lần lượt là trung điểm của các cạnh BB' và CC'.

a) Tính theo a thể tích khối tứ diện AA'MN.

b) Tính côsin góc nhị diện [A, MN, A'].

Lời giải:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a

a) Ta có VNAA'M=13d(N,(AMA')).SAA'M.

Do CC' // AA' nên CC' // (AA'B'B) nên d(N, (AMA')) = d(C, (AA'B'B)).

Kẻ CH AB tại H.

Vì BB' (ABC) nên BB' CH mà CH AB nên CH (AA'B'B).

Do đó d(C, (AA'B'B)) = CH.

Xét tam giác ABC đều cạnh a, CH là đường cao có CH = a32,

suy ra d(C, (AA'B'B)) = a32.

Vì ABB'A' là hình chữ nhật có d(M, AA') = AB = a.

Do đó SAA'M=12d(M,AA').AA' = 12.a.2a = a2.

Vậy VNAA'M=13dN,(AMA')SAA'M=13a32a2=a336.

b) Gọi I là trung điểm của MN.

Vì M, N là trung điểm của BB' và CC' nên CN = C'N, BM = B'M.

Mà AA' = BB' = CC' = 2a nên CN = C'N = BM = B'M = a.

Vì ABC.A'B'C' là hình lăng trụ tam giác đều nên

AB = AC = BC = A'B' = A'C' = B'C' = a.

Xét tam giác CAN vuông tại C, có AN2 = AC2 + CN2 = a2 + a2 = 2a2.

Xét tam giác A'C'N vuông tại C', có A'N2 = A'C'2 + C'N2 = a2 + a2 = 2a2.

Xét tam giác A'B'M vuông tại B', có A'M2 = A'B'2 + B'M2 = a2 + a2 = 2a2.

Xét tam giác ABM vuông tại B, có AM2 = AB2 + BM2 = a2 + a2 = 2a2.

Do đó AN = A'N = A'M = AM.

Xét tam giác A'MN có A'M = A'N nên tam giác A'MN cân tại A' mà A'I là trung tuyến nên A'I đồng thời là đường cao hay A'I MN.

Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A mà AI là trung tuyến nên AI đồng thời là đường cao hay AI MN.

Vì A'I MN và AI MN nên [A, MN, A'] = AIA'^.

Vì I là trung điểm của MN mà MN = BC = a nên MI = IN = MN2=a2.

Xét tam giác A'MI vuông tại I, có A'I=A'M2MI2=2a2a24=a72.

Xét tam giác ANI vuông tại I, có AI=AN2NI2=2a2a24=a72.

Áp dụng định lí côsin trong tam giác AA'I, ta có:

cosAIA'^=AI2+A'I2AA'22AIA'I=7a24+7a244a227a24=17.

Vậy côsin góc nhị diện [A, MN, A'] bằng -17.

Đánh giá

0

0 đánh giá