Cho các hàm số f(x) = 3^(2x −1) và g(x) = xln9. Giải bất phương trình f'(x) < g'(x)

324

Với giải Bài 33 trang 71 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập ôn tập cuối năm

Bài 33 trang 71 SBT Toán 11 Tập 2: Cho các hàm số f(x) = 32x −1 và g(x) = xln9. Giải bất phương trình f'(x) < g'(x).

Lời giải:

Có f'(x) = (32x −1)' = (32x −1).ln3.(2x – 1)' = 2.ln3.32x −1.

g'(x) = (xln9)' = ln9.

Để f'(x) < g'(x) thì 2.ln3.32x −1 < ln9 2.ln3.32x −1 < ln32 2.ln3.32x −1 < 2.ln3

32x −1 < 1 2x – 1 < 0 x < 12.

Vậy nghiệm của bất phương trình là: x < 12.

Đánh giá

0

0 đánh giá