Giải SBT Toán 11 trang 70 Tập 2 Kết nối tri thức

209

Với lời giải SBT Toán 11 trang 70 Tập 2 chi tiết trong Bài tập ôn tập cuối năm sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập ôn tập cuối năm

Bài 25 trang 70 SBT Toán 11 Tập 2: Cho sinx = -13, xπ;3π2 . Tính giá trị cos2xπ3.

Lời giải:

Có sin2x + cos2x = 1 nên 132+cos2x=1cos2x=89cosx=±223 .

xπ;3π2 nên cosx < 0. Do đó cosx = -223.

Lại có cos2xπ3 = cos2xcosπ3+sin2xsinπ3

= 12cos2x+32sin2x

= 12(1-2sin2x) + 3sinxcosx

=1212132+313223=7+4618.

Vậy cos2xπ3=7+4618.

Bài 26 trang 70 SBT Toán 11 Tập 2: Chứng minh rằng:

a) sin3x = 4sinx sin(60° − x) sin(60° + x);

b) sinxsin2x+sin3xcosxcos2x+cos3x=tan2x.

Lời giải:

a) Có sin(60° − x) sin(60° + x) = -12(cos120o - cos(-2x))

= -1212cos2x = =14+12cos2x.

Do đó 4sinx sin(60° − x) sin(60° + x) = 4sinx14+12cos2x = sinx + 2sinxcos2x

= sinx + sin3x + sin(−x) = sinx + sin3x – sinx = sin3x.

Vậy sin3x = 4sinx sin(60° − x) sin(60° + x).

b) Vế phải = sinxsin2x+sin3xcosxcos2x+cos3x=sinx+sin3xsin2xcosx+cos3xcos2x

=2sin2xcosxsin2x2cos2xcosxcos2x=sin2x2cosx1cos2x2cosx1= tan2x = vế trái.

Vậy sinxsin2x+sin3xcosxcos2x+cos3x= tan2x.

Bài 27 trang 70 SBT Toán 11 Tập 2: Xét xem các dãy số với công thức tổng quát sau có phải là cấp số cộng/cấp số nhân hay không. Tìm số hạng đầu tiên và công sai/công bội nếu có.

a) un = 5n – 7; b) un = 9.2n; c) un = n2 – n + 1.

Lời giải:

a) + Có un + 1 = 5(n + 1) – 7 = 5n – 2.

Xét un + 1 – un = 5n – 2 – (5n – 7) = 5 với mọi n.

Do đó (un) là cấp số cộng với u1 = −2 và d = 5.

+ Có u1 = −2; u2 = 3; u3 = 8.

u2u1=3283=u3u2 nên (un) không là cấp số nhân.

b) + Có un + 1 = 9.2n + 1 = 18.2n.

un+1un=182n92n=2 với mọi n nên (un) là cấp số nhân.

+ Có u1 = 18; u2 = 36; u3 = 72.

Vì u2 – u1 = 36 – 18 = 18 ≠ u3 – u2 = 72 – 36 = 36 nên (un) không là cấp số cộng.

c) Có u1 = 1; u2 = 3; u3 = 7.

Vì u2 – u1 = 3 – 1 ≠ u3 – u2 = 7 – 3 nên (un) không là cấp số cộng.

u2u1=3173=u3u2 nên (un) không là cấp số nhân.

Bài 28 trang 70 SBT Toán 11 Tập 2: Một công ty kĩ thuật đưa ra hai phương án về lương cho kĩ sư làm việc tại công ty như sau:

Phương án 1: Mức lương của quý làm việc đầu tiên là 64,5 triệu đồng/quý và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 10 triệu đồng mỗi quý.

Phương án 2: Mức lương của quý làm việc đầu tiên là 24 triệu đồng/quý và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 1,2 lần mỗi quý.

Hãy tính tổng số tiền lương một kĩ sư nhận được sau 5 năm làm việc cho công ty này theo mỗi phương án trên. Kĩ sư nên chọn phương án nhận lương nào?

Lời giải:

Ta có 5 năm là 20 quý.

Phương án 1: Ta thấy (un) là cấp số cộng với u1 = 64,5 và d = 10.

Tổng số tiền lương kĩ sư nhận được sau 5 năm là:

S20=u1+u20202=u1+u1+19d202=64,52+1910202 = 3 190 (triệu đồng).

Phương án 2: Ta thấy (un) là cấp số nhân với u1 = 24 và q = 1,2.

Tổng số tiền lương kĩ sư nhận được sau 5 năm là:

S20=u11q201q=2411,22011,24 480,5 (triệu đồng).

Vậy kĩ sư nên chọn phương án nhận lương thứ 2.

Bài 29 trang 70 SBT Toán 11 Tập 2: Giả sử un là số hạng thứ n của dãy số (un) và un=1+5n15n2n5.

a) Chứng tỏ rằng u1 = 1, u2 = 1 và un + 2 = un + 1 + un với mọi n *. Từ đó suy ra (un) là dãy số Fibonacci.

b) Viết 11 số hạng đầu tiên của dãy Fibonacci và 10 tỉ số un+1un đầu tiên.

Tính limn+un+1un.

Lời giải:

a) Ta có an + 2 – bn + 2 = an + 1.a − bn + 1.b

= an + 1.a + an + 1.b − bn + 1.b − bn + 1.a − an + 1.b + bn + 1.a

= an + 1.(a + b) − bn + 1.(a + b) – ab(an − bn)

= (an + 1 − bn + 1).(a + b) – ab(an − bn) (*)

u1=1+51151215=2525=1.

u2=1+52152225=4545=1.

Áp dụng (*), ta có:

un+2=1+5n+215n+22n+25

Giả sử un là số hạng thứ n của dãy số (un)

=1+5n+115n+12n+15+1+5n15n2n5 = un+1 + un.

Vậy un + 2 = un+1 + un. Do đó (un) là dãy Fibonacci.

b) Ta có bảng sau

n

1

2

3

4

5

6

7

8

9

10

11

un

1

1

2

3

5

8

13

21

34

55

89

un+1un

1

2

32 53 85 138 2113 3421 5534 8955  

Ta có limn+un+1un=limn+1+5n+115n+12n+151+5n15n2n5

Giả sử un là số hạng thứ n của dãy số (un)

Bài 30 trang 70 SBT Toán 11 Tập 2: Tính các giới hạn sau:

a) limx22x2x10x+2; b) limx4x2+x+1x2x+1;

c) limx21x22x22; d) limx52xx+5.

Lời giải:

a) limx22x2x10x+2=limx22x5x+2x+2=limx2(2x-5) = -9.

b) limx4x2+x+1x2x+1= Tính các giới hạn sau trang 70 SBT Toán 11 Tập 2

=limxx4+1x+1x2x2x+1=limx4+1x+1x212+1x=32.

c) limx21x22x22=limx2x22x22=limx2x4x22=.

(do limx2(x-4) = -2 < 0 và limx2(x-2)2 = 0, (x-2)2>0, x2).

d) limx52xx+5=+ (do limx5(2x) = -10 < 0 và limx5(x+5) = 0, x + 5 < 0, ∀x < −5).

Đánh giá

0

0 đánh giá