Cho hình chóp S.ABC có đáy ABC là tam giác đều canh a, cạnh bên SA vuông góc với đáy

758

Với giải Bài 1 trang 68 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 4: Khoảng cách trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Khoảng cách trong không gian

Bài 1 trang 68 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có đáy ABC là tam giác đều canh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết SA = a62 .

Lời giải:

Cho hình chóp S ABC có đáy ABC là tam giác đều canh a cạnh bên SA vuông góc với đáy

Gọi E là trung điểm của BC thì BC ⊥ AE (vì ∆ABC đều).

Ta có BC ⊥ SA và BC ⊥ AE  BC ⊥ (SAE).

(SBC) ⊥ (SAE).

Trong mặt phẳng (SAE), vẽ AF ⊥ SE (F  SE).

Suy ra AF ⊥ (SBC) hay d(A, (SBC))=AF.

Xét ∆SAE vuông tại A, ta có:

1AF2=1AS2+1AE2=23a2+43a2=2a2AF=a22.

Vậy dS,ABC=AF=a22 .

Đánh giá

0

0 đánh giá