Với lời giải SBT Toán 8 trang 84 Tập 2 Bài tập cuối chương 8 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài tập cuối chương 8
Bài 62 trang 84 SBT Toán 8 Tập 2: Cho tam giác ABC có BD là đường phân giác của góc ABC (Hình 56). Độ dài DC là:
A. 6.
B. 9.
C. 5.
D. 8 .
Lời giải:
Đáp án đúng là: A
Xét ∆ABC có BD là đường phân giác góc ABC nên (tính chất đường phân giác)
Hay suy ra
Vậy DC = 6.
Bài 63 trang 84 SBT Toán 8 Tập 2: ∆ABC ᔕ ∆DEF theo tỉ số đồng dạng k, ∆MNP ᔕ ∆DEF theo tỉ số đồng dạng q. Khi đó, ∆ABC ᔕ ∆MNP theo tỉ số đồng dạng là:
A. k + q.
B. kq.
C.
D.
Lời giải:
Đáp án đúng là: D
∆ABC ᔕ ∆DEF theo tỉ số đồng dạng k nên ta có (tỉ số đồng dạng).
∆MNP ᔕ ∆DEF theo tỉ số đồng dạng q nên ta có (tỉ số đồng dạng).
Ta có:
Vậy ∆ABC ᔕ ∆MNP theo tỉ số đồng dạng là
Bài 64 trang 84 SBT Toán 8 Tập 2: Để đo khoảng cách AB, trong đó điểm B không tới được, người ta tiến hành đo bằng cách lấy các điểm C, D, E sao cho AD = 10 m, CD = 7 m, DE = 4 m (Hình 57). Khi đó, khoảng cách AB (tính theo đơn vị mét và làm tròn kết quả đến hàng phần mười) là:
A. 9,3 m.
B. 9,4 m.
C. 9,6 m.
D. 9,7 m.
Lời giải:
Đáp án đúng là: D
Ta có AC = AD + DC = 10 + 17 = 17 (m).
Do DE ⊥ AC, BA ⊥ AC nên DE // AB
Xét ∆ABC với DE // AB, ta có (hệ quả của định lí Thalès)
Hay suy ra (m).
Vậy khoảng cách AB khoảng 9,7 m.
Bài 65 trang 84 SBT Toán 8 Tập 2: Cho tam giác ABC, điểm M thuộc cạnh BC sao cho MC = 2MB. Đường thẳng qua M song song với AC cắt AB ở D. Đường thẳng qua M song song với AB cắt AC ở E. Gọi x, y lần lượt là chu vi tam giác DBM và tam giác ECM. Tính x + 2y, biết chu vi tam giác ABC bằng 30 cm.
Lời giải:
• Do MC = 2MB và MB + MC = BC nên BC = MB + 2MB = 3MB
Do đó
Vì DM // AB nên ∆BDM ᔕ ∆BAC.
Suy ra (tỉ số đồng dạng)
Do đó = = (tính chất của dãy tỉ số bằng nhau).
Mà nên
Do đó chu vi tam giác DBM là (cm).
• Do MC = 2MB hay
Do MB + MC = BC nên
Suy ra
Vì EM // AC nên ∆ECM ᔕ ∆ACB.
Suy ra (tỉ số đồng dạng)
Do đó = = (tính chất của dãy tỉ số bằng nhau).
Mà nên
Do đó chu vi tam giác ECM là (cm).
Vậy x + 2y = 10 + 2.20 = 50 (cm).
Bài 66 trang 84 SBT Toán 8 Tập 2: Cho điểm M thuộc đoạn thẳng AB, với MA = a, MB = b. Vẽ hai tam giác đều AMC và BMD; gọi E là giao điểm của AD và CM, F là giao điểm của DM và BC (Hình 58).
a) Chứng minh EF // AB.
b) Tính ME, MF theo a, b.
Lời giải:
a) Do ∆AMC và ∆BMD là các tam giác đều nên ta có: AC = AM = CM = a, DM = DB = MB = b và
Mà các cặp góc này ở vị trí so le trong nên MD // AC, DB // CM.
Xét ∆ACE với MD // AC, ta có (hệ quả của định lí Thalès).
Xét ∆BDF với DB // CM, ta có (hệ quả của định lí Thalès).
Từ đó, ta có:
Xét ∆CMB có nên EF // MB hay EF // AB (do M ∈ AB).
b) Từ EF // AB (câu a) suy ra (các cặp góc ở vị trí so le trong)
Tam giác EMF có nên tam giác EMF là tam giác đều.
Do đó ME = MF = EF.
Xét ∆CMB có EF // MB nên ta có: (hệ quả của định lí Thalès).
Do đó = = = =
Hay suy ra
Vậy
Xem thêm lời giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Bài 57 trang 83 SBT Toán 8 Tập 2: Cho hai tam giác MNP và M’N’P’. Phát biểu nào sau đây là đúng?...
Bài 58 trang 83 SBT Toán 8 Tập 2: Nếu ∆MNP ᔕ ∆DEG thì...
Bài 59 trang 83 SBT Toán 8 Tập 2: Cho ∆MNP ᔕ ∆M’N’P’ và . Số đo góc P là:......
Bài 60 trang 83 SBT Toán 8 Tập 2: Hình 54 cho biết A’B’ = 4, A’O = 3, AO = 6, OB = x, AB = y..
Bài 61 trang 83 SBT Toán 8 Tập 2: Cho tam giác ABC có DE // BC (Hình 55)...
Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác: