Bạn cần đăng nhập để báo cáo vi phạm tài liệu

Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau tại H. Chứng minh

1.6 K

Với giải Bài 70 trang 85 SBT Toán lớp 8 Cánh diều chi tiết trong Bài tập cuối chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 8

Bài 70 trang 85 SBT Toán 8 Tập 2Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau tại H. Chứng minh:

a) ∆EBH ᔕ ∆DCH, ∆ADE ᔕ ∆ABC;

b) DB là tia phân giác của góc EDI, với I là giao điểm của AH và BC.

Lời giải:

Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau tại H

a) Do BD, CE là các đường cao nên BD ⊥ AC, CE ⊥ AB.

Xét ∆EBH và ∆DCH có:

BEH^=CDH^=90°; EHB^=DHC^ (hai góc đối đỉnh)

Do đó ∆EBH ᔕ ∆DCH (g.g.).

Xét ∆ABD và ∆ACE có:

ADB^=AEC^=90°; A^ là góc chung

Do đó ∆ADE ᔕ ∆ABC (g.g).

Suy ra ADAB=AEAC (tỉ số đồng dạng).

Xét ∆ADE và ∆ABC có:

ADAB=AEAC, A^ là góc chung

Do đó ∆ADE ᔕ ∆ABC (c.g.c).

b) Do ∆ADE ᔕ ∆ABC (câu a) nên ADE^=ABC^ (hai góc tương ứng) (1).

Xét ∆CIA và ∆CDB có:

CIA^=CDB^=90°; C^ là góc chung

Do đó ∆CIA ᔕ ∆CDB (g.g).

Suy ra CICD=CACB (tỉ số đồng dạng) hay CDCB=CICA.

Xét ∆CDI và ∆CBA có:

CDCB=CICA, C^ là góc chung

Do đó ∆CDI ᔕ ∆CBA (c.g.c).

Suy ra CDI^=CBA^ (hai góc tương ứng) (2).

Từ (1) và (2), ta có ADE^=CDI^.

Do đó 90°ADE^=90°CDI^ hay EDB^=BDI^.

Vậy DB là đường phân giác của góc EDI.

Đánh giá

0

0 đánh giá