Với giải Bài 73 trang 85 SBT Toán lớp 8 Cánh diều chi tiết trong Bài tập cuối chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài tập cuối chương 8
Bài 73 trang 85 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh:
a) DE song song với AC;
b) DE = DF.
Lời giải:
a) Do MNPQ là hình vuông nên MQ // NP, mà E ∈ MQ nên EQ // NP.
Xét ∆BNP với EQ // NP, ta có (định lí Thalès) (1)
MNPQ là hình vuông nên MQ ⊥ BC, do đó tam giác BQM vuông tại Q.
Xét ∆BQM (vuông tại Q) và ∆BAC (vuông tại A) có: là góc chung
Do đó ∆BQM ᔕ ∆BAC (g.g).
Suy ra (tỉ số đồng dạng)
Hay mà QM = QP (do MNPQ là hình vuông)
Do đó (2)
Xét ∆ABC có AD là phân giác của góc BAC nên: (tính chất đường phân giác) (3)
Từ (1), (2), (3) ta có
Xét ∆NBC có nên DE // NC (định lí Thalès đảo) hay DE // AC.
b) Do DE // AC (câu a) nên (hệ quả của định lí Thalès)
Do đó
• Do MNPQ là hình vuông nên MQ // NP, mà F ∈ NP nên FP // MQ.
Xét ∆MQB với FP // MQ, ta có (định lí Thalès) (4)
Xét ∆CPN (vuông tại P) và ∆CAB (vuông tại A) có: là góc chung
Do đó ∆CPN ᔕ ∆CAB (g.g).
Suy ra (tỉ số đồng dạng) hay
Mà PQ = PN (do MNPQ là hình vuông) nên (5)
Từ ta có (6)
Từ (4), (5), (6) ta có
Xét ∆MBC có nên DF // BM (định lí Thalès đảo) hay DF // AB.
Suy ra (hệ quả của định lí Thalès), nên .
Mặt khác, ∆ABC với MN // BC (cùng vuông góc với MQ), ta có (hệ quả của định lí Thalès), do đó
Lại có nên = =
Suy ra DE = DF.
Xem thêm lời giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Bài 56 trang 83 SBT Toán 8 Tập 2: Cho tam giác ABC. Các điểm M, N lần lượt thuộc các cạnh AB và AC thỏa mãn MN // BC và . Tỉ số bằng...
Bài 57 trang 83 SBT Toán 8 Tập 2: Cho hai tam giác MNP và M’N’P’. Phát biểu nào sau đây là đúng?...
Bài 58 trang 83 SBT Toán 8 Tập 2: Nếu ∆MNP ᔕ ∆DEG thì...
Bài 59 trang 83 SBT Toán 8 Tập 2: Cho ∆MNP ᔕ ∆M’N’P’ và . Số đo góc P là:......
Bài 60 trang 83 SBT Toán 8 Tập 2: Hình 54 cho biết A’B’ = 4, A’O = 3, AO = 6, OB = x, AB = y..
Bài 61 trang 83 SBT Toán 8 Tập 2: Cho tam giác ABC có DE // BC (Hình 55)...
Bài 62 trang 84 SBT Toán 8 Tập 2: Cho tam giác ABC có BD là đường phân giác của góc ABC (Hình 56). Độ dài DC là:...
Bài 63 trang 84 SBT Toán 8 Tập 2: ∆ABC ᔕ ∆DEF theo tỉ số đồng dạng k, ∆MNP ᔕ ∆DEF theo tỉ số đồng dạng q. Khi đó, ∆ABC ᔕ ∆MNP theo tỉ số đồng dạng là:....
Bài 64 trang 84 SBT Toán 8 Tập 2: Để đo khoảng cách AB, trong đó điểm B không tới được, người ta tiến hành đo bằng cách lấy các điểm C, D, E sao cho AD = 10 m, CD = 7 m, DE = 4 m (Hình 57). Khi đó, khoảng cách AB (tính theo đơn vị mét và làm tròn kết quả đến hàng phần mười) là:...
Bài 65 trang 84 SBT Toán 8 Tập 2: Cho tam giác ABC, điểm M thuộc cạnh BC sao cho MC = 2MB. Đường thẳng qua M song song với AC cắt AB ở D. Đường thẳng qua M song song với AB cắt AC ở E. Gọi x, y lần lượt là chu vi tam giác DBM và tam giác ECM. Tính x + 2y, biết chu vi tam giác ABC bằng 30 cm....
Bài 66 trang 84 SBT Toán 8 Tập 2: Cho điểm M thuộc đoạn thẳng AB, với MA = a, MB = b. Vẽ hai tam giác đều AMC và BMD; gọi E là giao điểm của AD và CM, F là giao điểm của DM và BC (Hình 58)....
Bài 67 trang 85 SBT Toán 8 Tập 2: Một chiếc kệ bảy hoa quả có ba tầng được thiết kế như Hình 59. Tầng đáy có đường kính AB là 32 cm. Tầng giữa có đường kính CD nhỏ hơn đường kính tầng đáy là 12 cm. Tính độ dài đường kính tầng trên cùng EF, biết EF // AB; D, C lần lượt là trung điểm của EA và FB....
Bài 68 trang 85 SBT Toán 8 Tập 2: Cho tam giác ABC có ba góc nhọn, điểm I thuộc cạnh BC và IM, IN lần lượt là đường phân giác của các góc AIC và AIB. Chứng minh: AN.BI.CM = BN.IC.AM....
Bài 69 trang 85 SBT Toán 8 Tập 2: Cho tam giác ABC cân tại A, AB = 10 cm, BC = 12 cm. Gọi I là giao điểm của các đường phân giác của tam giác ABC. Tính độ dài AI.....
Bài 70 trang 85 SBT Toán 8 Tập 2: Cho tam giác ABC có ba góc nhọn, các đường cao.. BD và CE cắt nhau tại H. Chứng minh:....
Bài 71 trang 85 SBT Toán 8 Tập 2: Cho hình thang ABCD, AB // CD, Tính diện tích tam giác BDC, biết diện tích tam giác ABD là 44,8 cm2....
Bài 72 trang 85 SBT Toán 8 Tập 2: Cho hình bình hành ABCD (AC > BD). Vẽ CE vuông góc với đường thẳng AB tại E, CF vuông góc với đường thẳng AD tại F, BH vuông góc với đường thẳng AC tại H. Chứng minh:...
Bài 73 trang 85 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A, có đường phân giác AD. Vẽ hình vuông MNPQ ở đó M thuộc cạnh AB, N thuộc cạnh AC, P và Q thuộc cạnh BC. Gọi E và F lần lượt là giao điểm của BN và MQ, CM và NP (Hình 60). Chứng minh:....
Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác: