Giải SBT Toán 8 trang 49 Tập 2 Cánh diều

1.4 K

Với lời giải SBT Toán 8 trang 49 Tập 2 Bài tập cuối chương 7 trang 49 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 7 trang 49

Bài 20 trang 49 SBT Toán 8 Tập 2: Phương trình nào sau đây là phương trình bậc nhất một ẩn?

A. x2 ‒ 4 = 0.

B. 5x ‒ 2 = 0.

C. (x ‒ 2)(x ‒ 3) = 0.

D. x3 ‒ 8 = 0.

Lời giải:

Đáp án đúng là: B

Phương trình bậc nhất một ẩn là 5x ‒ 2 = 0.

Bài 21 trang 49 SBT Toán 8 Tập 2: Nghiệm của phương trình 3x ‒ 4 = 0 là

A. x = 34.

B. x = 34.

C. x = 43.

D. x = 43.

Lời giải:

Đáp án đúng là: D

3x ‒ 4 = 0

3x = 4

x = 43

Vậy phương trình đã cho có nghiệm là x = 43.

Bài 22 trang 49 SBT Toán 8 Tập 2: Nghiệm của phương trình 4x + 3 = 0 là

A. x = 34.

B. x = 34.

C. x = 43.

D. x = 43.

Lời giải:

Đáp án đúng là: A

4x + 3 = 0

4x = ‒3

x = 34

Vậy phương trình đã cho có nghiệm là x = 34.

Bài 23 trang 49 SBT Toán 8 Tập 2: Phương trình nào sau đây nhận x = ‒1 làm nghiệm?

A. 2x+45 = 0.

B. 13x+3 = 0.

C. 2x+2 = 0.

D. x+14 = 0.

Lời giải:

Đáp án đúng là: C

Thay x = ‒1 vào từng vế trái của mỗi phương trình ta có:

2x+45=21+45=250;

13x+3=131+3=13+3=430;

2x+2=21+2=2+2 = 0;

x+14=1+14=1+14=340.

Vậy x = ‒1 là nghiệm của phương trình 2x+2 = 0.

Bài 24 trang 49 SBT Toán 8 Tập 2: Giải các phương trình sau:

a) 0,1x ‒ 5 = 0,2 ‒ x;

b) 2x53=2x6;

c) 3x - 1 = x - 3.

Lời giải:

a) 0,1x ‒ 5 = 0,2 ‒ x

0,1x + x = 0,2 + 5

1,1x = 5,2

x = 5211.

Vậy phương trình có nghiệm x = 5211.

b) 2x53=2x6

22x56=2x6

4x ‒ 10 = 2 ‒ x

4x + x = 2 + 10

5x = 12

x = 125.

Vậy phương trình có nghiệm x = 125.

c) 3x - 1 = x - 3

3x - x = -3 + 1

31x = -2

x = 231.

Vậy phương trình có nghiệm x = 231.

Bài 25 trang 49 SBT Toán 8 Tập 2: Giải các phương trình sau:

a) 1,5(x ‒ 5) + 11 = 7(x ‒ 8) ‒ 50,5;

b) x45+3x210x=2x537x+26;

c) x+1332x+145x+36=x+712.

Lời giải:

a) 1,5(x ‒ 5) + 11 = 7(x ‒ 8) ‒ 50,5

1,5x ‒ 7,5 + 11 = 7x ‒ 56 ‒ 50,5

1,5x ‒ 7x = ‒ 56 ‒ 50,5 + 7,5 ‒ 11

‒5,5x = ‒110

x = 20

Vậy phương trình có nghiệm x = 20.

b) x45+3x210x=2x537x+26

6x430+33x23030x30=102x53057x+230

6x ‒ 24 + 9x ‒ 6 ‒ 30x = 20x ‒ 50 ‒ 35x ‒ 10

6x + 9x ‒ 30x ‒ 20x + 35x = ‒50 ‒ 10 + 24 + 6

0x = ‒30 (vô lý)

Vậy phương trình không có nghiệm.

c) x+1332x+145x+36=x+712

4x+112332x+11225x+312=12x12+712

4x + 4 ‒ 18x ‒ 9 ‒ 10x ‒ 6 = 12x + 7

4x ‒ 18x ‒ 10x ‒ 12x = 7 ‒ 4 + 9 + 6

‒36x = 18

x = 12.

Vậy phương trình có nghiệm x = 12.

Bài 26 trang 49 SBT Toán 8 Tập 2: Ga Nam Định cách ga Hà Nội 87 km. Một tàu hoả xuất phát từ ga Hà Nội đi đến ga Sài Gòn, 2 giờ sau một tàu hỏa khác xuất phát từ ga Nam Định cũng đi đến ga Sài Gòn. Sau 325 giờ tính từ khi tàu thứ nhất khởi hành ở ga Hà Nội thì hai tàu gặp nhau. Tính tốc độ trung bình của mỗi tàu, biết ga Nam Định nằm trên tuyến đường sắt nối ga Hà Nội với ga Sài Gòn và tốc độ trung bình của tàu thứ nhất lớn hơn tốc độ trung bình của tàu thứ hai là 5 km/h.

Lời giải:

Gọi tốc độ trung bình của tàu thứ nhất là x (km/h), x > 5.

Khi đó, tốc độ trung bình của tàu thứ hai là x ‒ 5 (km/h).

Đổi 325 giờ = 3,4 giờ.

Khi hai tàu gặp nhau, tàu thứ nhất đã đi được quãng đường là 3,4x (km), tàu thứ hai đi được quãng đường là (3,4 ‒ 2).(x ‒ 5) (km).

Do ga Nam Định cách ga Hà Nội 87 km, tức tàu thứ nhất đi được nhiều hơn tàu thứ hai 87 km nên ta có phương trình: 3,4x ‒ (3,4 ‒ 2).(x ‒ 5) = 87.

Giải phương trình:

3,4x ‒ (3,4 ‒ 2).(x ‒ 5) = 87

3,4x ‒ 1,4.(x ‒ 5) = 87

3,4x – 1,4x + 7 = 87

2x = 87 – 7

2x = 80

x = 4 (thỏa mãn điều kiện).

Vậy tốc độ trung bình của tàu thứ nhất là 40 km/h, của tàu thứ hai là 40 ‒ 5 = 35 km/h.

Bài 27 trang 49 SBT Toán 8 Tập 2: Có hai dung dịch acid cùng loại có nồng độ acid lần lượt là 45% và 25%. Tính khối lượng mỗi dung dịch acid đem trộn để được 5 kg dung dịch có nồng độ acid là 33%.

Lời giải:

Gọi khối lượng dung dịch acid có nồng độ 45% đem trộn là x (kg), 0 < x < 5.

Khi đó, khối lượng dung dịch acid có nồng độ 25% đem trộn sẽ là 5 ‒ x (kg).

Khối lượng acid có trong dung dịch acid có nồng độ 45% là 45%x = 0,45x (kg).

Khối lượng acid có trong dung dịch acid có nồng độ 25% là:

25%(5 – x) = 0,25(5 – x) (kg).

Tổng khối lượng acid sau khi trộn là:

0,45x + 0,25(5 – x) = 0,45 + 1,25 – 0,25x = 0,2x + 1,25 (kg).

Sau khi trộn hai dung dịch acid trên được dung dịch acid có nồng độ 33% nên ta có:

0,2x+1,255100% = 33%.

Giải phương trình:

0,2x+1,255100% = 33%.

0,2x + 1,25 = 0,33 . 5

0,2x + 1,25 = 1,65

0,2x = 1,65 ‒ 1,25

0,2x = 0,4

x = 2 (thỏa mãn điều kiện).

Vậy khối lượng dung dịch acid có nồng độ 45% đem trộn là 2 kg, khối lượng dung dịch acid có nồng độ 25% đem trộn là 5 ‒ 2 = 3 kg.

Đánh giá

0

0 đánh giá