Một tam giác vuông có độ dài cạnh nhỏ nhất là 5 cm, cạnh huyền có độ dài lớn hơn độ dài

370

Với giải Bài 34 trang 50 SBT Toán lớp 8 Cánh diều chi tiết trong Bài tập cuối chương 7 trang 49 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 7 trang 49

Bài 34 trang 50 SBT Toán 8 Tập 2: Một tam giác vuông có độ dài cạnh nhỏ nhất là 5 cm, cạnh huyền có độ dài lớn hơn độ dài cạnh góc vuông còn lại là 1 cm. Tính độ dài cạnh huyền của tam giác vuông đó.

Lời giải:

Gọi độ dài cạnh huyền của tam giác vuông đó là x (cm), x > 5.

Độ dài cạnh góc vuông còn lại là x ‒ 1 (cm).

Áp dụng định lý Pythagore trong tam giác vuông, ta có phương trình:

(x ‒ 1)2 + 52 = x2.

Giải phương trình:

(x ‒ 1)2 + 52 = x2

x2 ‒ 2x + 1 + 25 = x2

x2 ‒ x2 ‒ 2x = ‒25 ‒ 1

‒2x = ‒26

x = 13 (thoả mãn điều kiện).

Vậy độ dài cạnh huyền của tam giác vuông đó là 13 cm.

Đánh giá

0

0 đánh giá